题目内容

△ABC的内角A、B、C的对边分别为a、b、c,已知cos(A-C)+cosB=1,a=2c,求C.
分析:由cos(A-C)+cosB=cos(A-C)-cos(A+C)=1,可得sinAsinC=
1
2
,由a=2c及正弦定理可得sinA=2sinC,联立可求C
解答:解:由B=π-(A+C)可得cosB=-cos(A+C)
∴cos(A-C)+cosB=cos(A-C)-cos(A+C)=2sinAsinC=1
∴sinAsinC=
1
2

由a=2c及正弦定理可得sinA=2sinC②
①②联立可得,sin2C=
1
4

∵0<C<π
∴sinC=
1
2

a=2c即a>c
C=
π
6
点评:本题主要考查了两角和与差的余弦公式及正弦定理的应用,属于基础试题
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网