题目内容
已知等差数列{an}的公差大于1,Sn是该数列的前n项和.若a4=S3-2,a1+a128=S42.
(1)求数列{an}的通项公式;
(2)若bn=
,求数列{bn}的前n项和Tn.
(1)求数列{an}的通项公式;
(2)若bn=
| 1 |
| anan+1 |
(1)∵a4=S3-2,a1+a128=S42.
∴
∵d>1
解方程可得,a1=1,d=2
∴an=2n-1;
(2)∵bn=
=
=
(
-
)
∴Tn=
(1-
+
-
+…+
-
)
=
(1-
)
∴Tn=
∴
|
∵d>1
解方程可得,a1=1,d=2
∴an=2n-1;
(2)∵bn=
| 1 |
| anan+1 |
| 1 |
| (2n-1)(2n+1) |
| 1 |
| 2 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
∴Tn=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
=
| 1 |
| 2 |
| 1 |
| 2n+1 |
∴Tn=
| n |
| 2n+1 |
练习册系列答案
相关题目