题目内容
设曲线f(x)=xn+1(n∈N*)在点(1,1)处的切线与x轴的交点的横坐标为xn,则log2010x1+log2010x2+…+log2010x2009的值为( )
| A.-log20102009 | B.-1 |
| C.((log20102009)-1 | D.1 |
设过(1,1)的切线斜率k,f(x)′=(n+1)xn
则k=f(1)′=n+1,切线方程y-1=(n+1)(x-1)
令y=0,可得xn=
∴X1•X2…X2009=
•
• …
=
log2010x1+log2010x2+…+log2010x2009=log2010X1• X2…X2009=log2010
=-1
故选 B
则k=f(1)′=n+1,切线方程y-1=(n+1)(x-1)
令y=0,可得xn=
| n |
| n+1 |
∴X1•X2…X2009=
| 1 |
| 2 |
| 2 |
| 3 |
| 2009 |
| 2010 |
| 1 |
| 2010 |
log2010x1+log2010x2+…+log2010x2009=log2010X1• X2…X2009=log2010
| 1 |
| 2010 |
故选 B
练习册系列答案
相关题目
设曲线f(x)=xn+1(n∈N*)在点(1,1)处的切线与x轴的交点的横坐标为xn,则log2010x1+log2010x2+…+log2010x2009的值为( )
| A、-log20102009 | B、-1 | C、((log20102009)-1 | D、1 |