题目内容
数列{an}中,a1=1,对所有的n≥2都有a1a2a3…an=n2,则a3+a5=
.
| 61 |
| 16 |
| 61 |
| 16 |
分析:由数列的递推式依次求出a2,a3,a4,a5,则答案可求.
解答:解:由a1=1,a1a2a3…an=n2,
所以,a2=
=
=4,a3=
=
=
,
a4=
=
=
,a5=
=
=
.
所以,a3+a5=
+
=
.
故答案为
.
所以,a2=
| 22 |
| a1 |
| 4 |
| 1 |
| 32 |
| a1a2 |
| 9 |
| 1×4 |
| 9 |
| 4 |
a4=
| 42 |
| a1a2a3 |
| 16 | ||
1×4×
|
| 16 |
| 9 |
| 52 |
| a1a2a3a4 |
| 25 | ||||
1×4×
|
| 25 |
| 16 |
所以,a3+a5=
| 9 |
| 4 |
| 25 |
| 16 |
| 61 |
| 16 |
故答案为
| 61 |
| 16 |
点评:本题考查了数列的递推式,考查了学生的计算能力,是中档题.
练习册系列答案
相关题目
数列{an}中,a1=
,an+an+1=
,n∈N*,则
(a1+a2+…+an)等于( )
| 1 |
| 5 |
| 6 |
| 5n+1 |
| lim |
| n→∞ |
A、
| ||
B、
| ||
C、
| ||
D、
|