题目内容
已知数列{an}满足a1=1, a2=
, an-1an+anan+1=2an-1an+1.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设数列{bn}的前n项和为Sn=1-
,试求数列{
}的前n项和Tn;
(Ⅲ)记数列{1-
}的前n项积为∏limit
(1-
),试证明:
<∏limit
(1-
)<1.
| 1 |
| 2 |
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设数列{bn}的前n项和为Sn=1-
| 1 |
| 2n |
| bn |
| an |
(Ⅲ)记数列{1-
| a | 2 n |
| s | n i=2 |
| a | 2 i |
| 1 |
| 2 |
| s | n i=2 |
| a | 2 i |
分析:(I)由an-1an+anan+1=2an-1an+1,两边同除以anan-1an+1即可⇒
+
=
.而a1=1且
-
=2-1=1,故{
}是首项为1,公差为1的等差数列.
(II)利用bn=
即可得到bn,可得
=
,利用“错位相减法”即可得到Tn;
(III)因为1-
=1-(
)2=(1+
)(1-
)=
•
.利用“累乘求积”即可得出∏limit
(1-
)=
(1+
).进而即可证明.
| 1 |
| an+1 |
| 1 |
| an-1 |
| 2 |
| an |
| 1 |
| a2 |
| 1 |
| a1 |
| 1 |
| an |
(II)利用bn=
|
| bn |
| an |
| n |
| 2n |
(III)因为1-
| a | 2 n |
| 1 |
| n |
| 1 |
| n |
| 1 |
| n |
| n+1 |
| n |
| n-1 |
| n |
| s | n i=2 |
| a | 2 i |
| 1 |
| 2 |
| 1 |
| n |
解答:解:(Ⅰ)由an-1an+anan+1=2an-1an+1⇒an(an-1+an+1)=2an-1an+1⇒
=
⇒
+
=
⇒
-
=
-
.
而a1=1且
-
=2-1=1,
因此{
}是首项为1,公差为1的等差数列.
从而
=1+1×(n-1)=n⇒an=
.
(Ⅱ)当n=1时,b1=S1=1-
=
.
当n≥2时,bn=Sn-Sn-1=(1-
)-(1-
)=
.
而b1也符合上式,故bn=
,从而:
=
.
所以Tn=
+
+
+…+
⇒
Tn=
+
+
+…+
.
将上面两式相减,可得:
Tn=
+
+
+…+
-
=
-
=1-
-
⇒Tn=2-
.
(Ⅲ)因为1-
=1-(
)2=(1+
)(1-
)=
•
.
故∏limit
(1-
)=(
•
)•(
•
)•(
•
)•…•(
•
)=(
•
•
•…•
)•(
•
•
•…•
)
•
=
(1+
).
由于n≥2,n∈N*,故0<
≤
,从而
<
(1+
)≤
<1,即
<∏limit
(1-
)<1.
| an-1+an+1 |
| an-1an+1 |
| 2 |
| an |
⇒
| 1 |
| an+1 |
| 1 |
| an-1 |
| 2 |
| an |
| 1 |
| an+1 |
| 1 |
| an |
| 1 |
| an |
| 1 |
| an-1 |
而a1=1且
| 1 |
| a2 |
| 1 |
| a1 |
因此{
| 1 |
| an |
从而
| 1 |
| an |
| 1 |
| n |
(Ⅱ)当n=1时,b1=S1=1-
| 1 |
| 2 |
| 1 |
| 2 |
当n≥2时,bn=Sn-Sn-1=(1-
| 1 |
| 2n |
| 1 |
| 2n-1 |
| 1 |
| 2n |
而b1也符合上式,故bn=
| 1 |
| 2n |
| bn |
| an |
| n |
| 2n |
所以Tn=
| 1 |
| 21 |
| 2 |
| 22 |
| 3 |
| 23 |
| n |
| 2n |
| 1 |
| 2 |
| 1 |
| 22 |
| 2 |
| 23 |
| 3 |
| 24 |
| n |
| 2n+1 |
将上面两式相减,可得:
| 1 |
| 2 |
| 1 |
| 21 |
| 1 |
| 22 |
| 1 |
| 23 |
| 1 |
| 2n |
| n |
| 2n+1 |
| ||||
1-
|
| n |
| 2n+1 |
| 1 |
| 2n |
| n |
| 2n+1 |
| n+2 |
| 2n |
(Ⅲ)因为1-
| a | 2 n |
| 1 |
| n |
| 1 |
| n |
| 1 |
| n |
| n+1 |
| n |
| n-1 |
| n |
故∏limit
| s | n i=2 |
| a | 2 i |
| 3 |
| 2 |
| 1 |
| 2 |
| 4 |
| 3 |
| 2 |
| 3 |
| 5 |
| 4 |
| 3 |
| 4 |
| n+1 |
| n |
| n-1 |
| n |
| 3 |
| 2 |
| 4 |
| 3 |
| 5 |
| 4 |
| n+1 |
| n |
| 1 |
| 2 |
| 2 |
| 3 |
| 3 |
| 4 |
| n-1 |
| n |
| n+1 |
| 2 |
| 1 |
| n |
| 1 |
| 2 |
| 1 |
| n |
由于n≥2,n∈N*,故0<
| 1 |
| n |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| n |
| 3 |
| 4 |
| 1 |
| 2 |
| s | n i=2 |
| a | 2 i |
点评:本题考查数列的递推公式的处理、等差数列的通项公式和前n项和求通项以及“错位相减法”、“累乘求积”等基础知识,突出考查了学生变形的能力,化归与转化的思想以及创新意识,是一道十分重视基础但又有比较好区分度的中等题.
练习册系列答案
相关题目