题目内容

已知函数f(x)=2acos2x+bsinxcosx,且f(0)=2,f(
π
3
)=
1
2
+
3
2

(Ⅰ)求a,b的值及f(x)的最小值;
(Ⅱ)若α-β≠kπ,k∈Z且α,β是方程f(x)=0的两个根,求证:sin(α+β)=cos(α+β).
(Ⅰ)f(x)=acos2x+
b
2
sin2x+a
由f(0)=2 f(
π
3
)=
1
2
+
3
2

a+a=2
-
a
2
+
3
b
4
+a=
1
2
+
3
2

解得a=1 b=2
所以f(x)=cos2x+sin2x+1=
2
sin(2x+
π
4
)+1
所以f(x)min=1-
2
,此时x=kπ+
8
,k∈Z
(Ⅱ)α,β是方程
2
cos(2x-
π
4
)+1=0的两个根
2
sin(2α+
π
4
)+1=
2
sin(2β+
π
4
)+1即sin(2α+
π
4
)=sin(2β+
π
4

∴2α+
π
4
=2kπ+2β+
π
4
 ①或2α+
π
4
=2kπ+π-(2β+
π
4
)②
α-β≠kπ,
∴①舍去,由②得
α+β=kπ+
π
4

∴tan(α+β)=tan(kπ+
π
4
)=1
sin(α+β)
cos(α+β)
=1

即sin(α+β)=cos(α+β).
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网