题目内容
已知函数f(x)=
cos2x+sinxcosx-
sin2x
(1)求f(x)的最小正周期、对称轴方程
(2)求f(x)的单调区间
(3)求f(x)在区间[-
,
]的最大值和最小值.
| 1 |
| 2 |
| 1 |
| 2 |
(1)求f(x)的最小正周期、对称轴方程
(2)求f(x)的单调区间
(3)求f(x)在区间[-
| π |
| 8 |
| π |
| 2 |
f(x)=
cos2x+sinxcosx-
sin2x=
cos2x+
sin2x=
sin(2x+
)
(1)T=
=π
由得2x+
=
+kπ(k∈Z)∴对称轴为x=
+
kπ(k∈Z)
(2)由-
+2kπ≤2x+
≤
+2kπ(k∈Z)得-
+kπ≤x≤
+kπ(k∈Z)
由
+2kπ≤2x+
≤
+2kπ(k∈Z)得
+kπ≤x≤
+kπ(k∈Z)
∴f(x)的单调增区间为[-
+kπ,
+kπ](k∈Z),
单调减区间为[
+kπ,
+kπ](k∈Z)
(3)∵x∈[-
,
]∴-
≤2x≤π,则0≤2x+
≤
当2x+
=
即x=
时,f(x)有最大值
当2x+
=
即x=
时,f(x)有最小值-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| ||
| 2 |
| π |
| 4 |
(1)T=
| 2π |
| 2 |
由得2x+
| π |
| 4 |
| π |
| 2 |
| π |
| 8 |
| 1 |
| 2 |
(2)由-
| π |
| 2 |
| π |
| 4 |
| π |
| 2 |
| 3π |
| 8 |
| π |
| 8 |
由
| π |
| 2 |
| π |
| 4 |
| 3π |
| 2 |
| π |
| 8 |
| 5π |
| 8 |
∴f(x)的单调增区间为[-
| 3π |
| 8 |
| π |
| 8 |
单调减区间为[
| π |
| 8 |
| 5π |
| 8 |
(3)∵x∈[-
| π |
| 8 |
| π |
| 2 |
| π |
| 4 |
| π |
| 4 |
| 5π |
| 4 |
当2x+
| π |
| 4 |
| π |
| 2 |
| π |
| 8 |
| ||
| 2 |
当2x+
| π |
| 4 |
| 5π |
| 4 |
| π |
| 2 |
| 1 |
| 2 |
练习册系列答案
相关题目