题目内容
(2008•黄冈模拟)抛物线y=(n2+n)x2-(2n+1)x+1(n∈N+),交x轴于An,Bn两点,则|A1B1|+|A2B2|+…+|A2007B2007|的值为
.
| 2007 |
| 2008 |
| 2007 |
| 2008 |
分析:利用因式分解可将y=(n2+n)x2-(2n+1)x+1化简为:y=(nx-1)[(n+1)x-1],依题意可求得Bn(
,0),An(
,0),从而可求得|AnBn|=
-
,于是可求所求式子的答案.
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| n |
| 1 |
| n+1 |
解答:解:∵y=(n2+n)x2-(2n+1)x+1=(nx-1)[(n+1)x-1],
由y=0得:x=
或x=
.
∴Bn(
,0),An(
,0),
∴|AnBn|=
-
,
∴|A1B1|+|A2B2|+…+|A2007B2007|
=(1-
)+(
-
)+…+(
-
)
=1-
=
.
故答案为:
.
由y=0得:x=
| 1 |
| n |
| 1 |
| n+1 |
∴Bn(
| 1 |
| n |
| 1 |
| n+1 |
∴|AnBn|=
| 1 |
| n |
| 1 |
| n+1 |
∴|A1B1|+|A2B2|+…+|A2007B2007|
=(1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2007 |
| 1 |
| 2008 |
=1-
| 1 |
| 2008 |
=
| 2007 |
| 2008 |
故答案为:
| 2007 |
| 2008 |
点评:本题考查数列的求和,着重考查函数的零点的应用,求得|AnBn|=
-
是关键,也是难点,属于中档题.
| 1 |
| n |
| 1 |
| n+1 |
练习册系列答案
相关题目