题目内容

已知二次函数y=ax2+bx+c的图象经过(-1,0),存在常数a,b,c使得不等式x≤y≤
1
2
(1+x2)
对一切实数x都成立,求常数a,b,c的值.
∵f(x)的图象过点(-1,0),∴a-b+c=0①
∵x≤f(x)≤
x2+1
2
对一切x∈R均成立,
∴当x=1时也成立,即1≤a+b+c≤1.
故有a+b+c=1.②
由①②得b=
1
2
,c=
1
2
-a.
∴f(x)=ax2+
1
2
x+
1
2
-a.
故x≤ax2+
1
2
x+
1
2
-a≤
x2+1
2
对一切x∈R成立,
也即
ax2-
1
2
x+
1
2
-a≥0
(1-2a)x2-x+2a≥0
恒成立?
1≤0
2≤0
a>0
1-2a>0
?
1
4
-4a(
1
2
-a)≤0
1-8a(1-2a)≤0
a>0
1-2a>0.

解得a=
1
4
.∴c=
1
2
-a=
1
4

∴常数a,b,c的值为:a=
1
4
,b=
1
2
,c=
1
4
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网