题目内容

已知数列{an}满足
1
a1
+
2
a2
+…+
n
an
=
3
8
(32n-1),n∈N*

(I)求数列{an}的通项公式;
(II)设bn=1og3
an
n
,求数列{
bn
2n
}
的前n项和.
分析:(I)由题设条
1
a1
=3,
n
an
=(
1
a1
+
2
a2
+…+
n
an
)-(
1
a1
+
2
a2
+…+
n-1
an-1
)=32n-1,由此能求出an
(Ⅱ)由bn=log3
an
n
=-(2n-1)=1-2n,知
bn
2n
=
1-2n
2n
.由此利用错位相减法能求出数列{
bn
2n
}
的前n项和Sn
解答:解:(I)∵数列{an}满足
1
a1
+
2
a2
+…+
n
an
=
3
8
(32n-1),n∈N*

1
a1
=
3
8
(32-1)=3,…(1分)
当n≥2时,∵
n
an
=(
1
a1
+
2
a2
+…+
n
an
)-(
1
a1
+
2
a2
+…+
n-1
an-1

=
3
8
(32n-1)-
3
8
(32n-2-1)=32n-1,…(5分)
当n=1,
n
an
=32n-1也成立,所以an=
n
32n-1
.…(6分)
(Ⅱ)∵bn=log3
an
n
=-(2n-1)=1-2n,…(7分)
bn
2n
=
1-2n
2n

∴数列{
bn
2n
}
的前n项和Sn=
1-2
2
+
1-2×2 
22
+
1-2×3
23
+…+
1-2n
2n

1
2
Sn
=
1-2
22
+
1-2×2
23
+
1-2×3
24
+…+
1-2n
2n+1

1
2
Sn=-
1
2
-(
1
2
+
1
4
+
1
8
+…+
1
2n-1
)-
1-2n
2n+1

=-
1
2
-
1
2
(1-
1
2n-1
)
1-
1
2
-
1-2n
2n+1

=-
1
2
-1+
1
2n-1
-
1-2n
2n+1

Sn=
4
2n
-
1-2n
2n
-3=
32n
2n
-3.
点评:本题考查数列的通项公式和前n项和的求法,解题时要认真审题,仔细解答,注意构造法和错位相减法的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网