题目内容
已知数列{an}满足
+
+…+
=
(32n-1),n∈N*
(I)求数列{an}的通项公式;
(II)设bn=1og3
,求数列{
}的前n项和.
| 1 |
| a1 |
| 2 |
| a2 |
| n |
| an |
| 3 |
| 8 |
(I)求数列{an}的通项公式;
(II)设bn=1og3
| an |
| n |
| bn |
| 2n |
分析:(I)由题设条
=3,
=(
+
+…+
)-(
+
+…+
)=32n-1,由此能求出an.
(Ⅱ)由bn=log3
=-(2n-1)=1-2n,知
=
.由此利用错位相减法能求出数列{
}的前n项和Sn.
| 1 |
| a1 |
| n |
| an |
| 1 |
| a1 |
| 2 |
| a2 |
| n |
| an |
| 1 |
| a1 |
| 2 |
| a2 |
| n-1 |
| an-1 |
(Ⅱ)由bn=log3
| an |
| n |
| bn |
| 2n |
| 1-2n |
| 2n |
| bn |
| 2n |
解答:解:(I)∵数列{an}满足
+
+…+
=
(32n-1),n∈N*,
∴
=
(32-1)=3,…(1分)
当n≥2时,∵
=(
+
+…+
)-(
+
+…+
)
=
(32n-1)-
(32n-2-1)=32n-1,…(5分)
当n=1,
=32n-1也成立,所以an=
.…(6分)
(Ⅱ)∵bn=log3
=-(2n-1)=1-2n,…(7分)
∴
=
.
∴数列{
}的前n项和Sn=
+
+
+…+
,
Sn=
+
+
+…+
,
∴
Sn=-
-(
+
+
+…+
)-
=-
-
-
=-
-1+
-
,
∴Sn=
-
-3=
-3.
| 1 |
| a1 |
| 2 |
| a2 |
| n |
| an |
| 3 |
| 8 |
∴
| 1 |
| a1 |
| 3 |
| 8 |
当n≥2时,∵
| n |
| an |
| 1 |
| a1 |
| 2 |
| a2 |
| n |
| an |
| 1 |
| a1 |
| 2 |
| a2 |
| n-1 |
| an-1 |
=
| 3 |
| 8 |
| 3 |
| 8 |
当n=1,
| n |
| an |
| n |
| 32n-1 |
(Ⅱ)∵bn=log3
| an |
| n |
∴
| bn |
| 2n |
| 1-2n |
| 2n |
∴数列{
| bn |
| 2n |
| 1-2 |
| 2 |
| 1-2×2 |
| 22 |
| 1-2×3 |
| 23 |
| 1-2n |
| 2n |
| 1 |
| 2 |
| 1-2 |
| 22 |
| 1-2×2 |
| 23 |
| 1-2×3 |
| 24 |
| 1-2n |
| 2n+1 |
∴
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 8 |
| 1 |
| 2n-1 |
| 1-2n |
| 2n+1 |
=-
| 1 |
| 2 |
| ||||
1-
|
| 1-2n |
| 2n+1 |
=-
| 1 |
| 2 |
| 1 |
| 2n-1 |
| 1-2n |
| 2n+1 |
∴Sn=
| 4 |
| 2n |
| 1-2n |
| 2n |
| 32n |
| 2n |
点评:本题考查数列的通项公式和前n项和的求法,解题时要认真审题,仔细解答,注意构造法和错位相减法的合理运用.
练习册系列答案
相关题目