题目内容

已知函数f(x)=ax2+bx+c,且a>b>c,a+b+c=0,则(  )
A.?x∈(0,1),都有f(x)>0B.?x∈(0,1),都有f(x)<0
C.?x0∈(0,1),使得f(x0)=0D.?x0∈(0,1),使得f(x0)>0
因为函数f(x)=ax2+bx+c,且a>b>c,所以二次函数的开口方向向上,并且c<0,
f(0)=c<0,又a+b+c=0,所以f(1)=a+b+c=0,由零点判定定理,可知,?x∈(0,1),都有f(x)<0.
故选B.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网