题目内容

(2013•河池模拟)已知椭圆方程为
x2
a2
+
y2
b2
=1(a>b>0),O为原点,F为右焦点,点M是椭圆右准线l上(除去与x轴的交点)的动点,过F作OM的垂线与以OM为直径的圆交于点N,则线段ON的长为(  )
分析:首先结合题意利用点斜式写出直线FN的方程,并且进行整理,设N(x,y),再由ON⊥NM,即斜率之积等于-1得到一个关于x,y的等式,进而把直线FN的方程代入此等式化简,可得x2+y2=a2,即可得到线段ON的长.
解答:解:由题意可得设F(c,0),点M(
a2
c
,m),
∴kOM=
mc
a2

由题意可得:OM⊥FN,
∴FN的方程为:y-0=
-a2
mc
(x-c),
∴整理方程可得:my=
-a2
c
(x-c),即my+
a2
c
x=a2①,
∵过点F作OM的垂线与以OM为直径的圆交于点N,
∴ON⊥NM,即KON•KNM=-1,
设N(x,y),
y
x
y-m
x-
a2
c
=-1,整理可得:x2+y2=
a2
c
x+my  ②,
联立①②得:x2+y2=
a2
c
x+my=a2
∴|ON|=
x2+y2
=a.
故选C.
点评:本题主要考查椭圆的简单性质与直线和圆的位置关系的应用,以及考查形式的运算能力与分析问题解决问题的能力,此题在运算方面有一定的技巧,因此在计算时要灵活,此题属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网