题目内容

对一切实数x,不等式x2+a|x|+1≥0恒成立,则实数a的取值范围是(  )
A.(-∞,-2)B.[-2,+∞)C.[-2,2]D.[0,+∞)
当x=0时,不等式x2+a|x|+1≥0恒成立,当x≠0时,则有 a≥
-1-|x|2
|x|
=-(|x|+
1
|x|
),故a大于或等于-(|x|+
1
|x|
) 的最大值.
由基本不等式可得 (|x|+
1
|x|
)≥2,∴-(|x|+
1
|x|
)≥-2,即-(|x|+
1
|x|
) 的最大值为-2,
故实数a的取值范围是[-2,+∞),
故选B.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网