题目内容
定义在R上的函数f (x)满足:如果对任意x1,x2∈R,都有f(
)≤
[f(x1)+f(x2)],则称函数f (x)是R上的凹函数,已知二次函数f(x)=ax2+x(a∈R,a≠0),
(1)当a=1时,试判断函数f (x)是否为凹函数,并说明理由;
(2)如果函数f (x)对任意的x∈[0,1]时,都有|f(x)|≤1,试求实数a的范围.
| x1+x2 |
| 2 |
| 1 |
| 2 |
(1)当a=1时,试判断函数f (x)是否为凹函数,并说明理由;
(2)如果函数f (x)对任意的x∈[0,1]时,都有|f(x)|≤1,试求实数a的范围.
(1)a=1时,函数f(x)是凹函数,
此时f(x)=x2+x,f(
)=(
)2+(
),
[f(x1)+f(x2)]=
[x12+x1+x22+x2],
作差得到:f(
)2-
[f(x1)+f(x2)]
=(
)2+(
)-
(x12+x22)-
(x1+x2)
=
-
=
=-(
)2≤0,
即有f(
)≤
[f(x1)+f(x2)],
故知函数f(x)=x2+x为凹函数;
(2)由-1≤f(x)=ax2+x≤1,
则有
?
i)若x=0时,则a∈R恒成立,
ii)若x∈(0,1]时,有
?
∵0<x≤1?
≥1.
∴当
=1时,a≥-(1+
)2+
=-2a≤(1-
)2-
=0
所以0≥a≥-2.
此时f(x)=x2+x,f(
| x1+x2 |
| 2 |
| x1+x2 |
| 2 |
| x1+x2 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
作差得到:f(
| x1+x2 |
| 2 |
| 1 |
| 2 |
=(
| x1+x2 |
| 2 |
| x1+x2 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
=
| ||||
| 4 |
2
| ||||
| 4 |
=
-
| ||||
| 4 |
| x1+x2 |
| 2 |
即有f(
| x1+x2 |
| 2 |
| 1 |
| 2 |
故知函数f(x)=x2+x为凹函数;
(2)由-1≤f(x)=ax2+x≤1,
则有
|
|
i)若x=0时,则a∈R恒成立,
ii)若x∈(0,1]时,有
|
|
∵0<x≤1?
| 1 |
| x |
∴当
| 1 |
| x |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 2 |
| 1 |
| 4 |
所以0≥a≥-2.
练习册系列答案
相关题目