题目内容
设a,b∈R,且a+b≥1,求证:a3+b3+3ab≥1.
证明:因为a3+b3+3ab-1?
=(a+b)3-3a2b-3ab2+3ab-1?
=(a+b-1)[(a+b)2+(a+b)+1]-3ab(a+b-1)??
=(a+b-1)(a2+b2-ab+a+b+1)?
=
(a+b-1)[(a-b)2+(a+1)2+(b+1)2]≥0,?
故a3+b3+3ab≥1.
练习册系列答案
相关题目
题目内容
设a,b∈R,且a+b≥1,求证:a3+b3+3ab≥1.
证明:因为a3+b3+3ab-1?
=(a+b)3-3a2b-3ab2+3ab-1?
=(a+b-1)[(a+b)2+(a+b)+1]-3ab(a+b-1)??
=(a+b-1)(a2+b2-ab+a+b+1)?
=
(a+b-1)[(a-b)2+(a+1)2+(b+1)2]≥0,?
故a3+b3+3ab≥1.