题目内容

设数列{an}的前n项和Sn满足:Sn+an=
n-1
n(n+1)
,n=1,2,…,则通项an=
1
2n
-
1
n(n+1)
1
2n
-
1
n(n+1)
分析:通过一系列变形得到2(an+1+
1
(n+1)(n+2)
)=an+
1
n(n+1)
,构造新数列bn=an+
1
n(n+1)
可知bn+1=
1
2
bn
即数列{bn}为等比数列,通过等比数列的知识可求得通项.
解答:解:∵Sn+an=
n-1
n(n+1)

Sn=
n-1
n(n+1)
-an
Sn+1=
n
(n+2)(n+1)
-an+1

an+1=Sn+1-Sn=
n
(n+1)(n+2)
-an+1-
n-1
n(n+1)
+an

即  2an+1=
n
(n+1)(n+2)
-
n-1
n(n+1)
+an
=
-n+2
n(n+1)(n+2)
+an
=
n+2-2n
n(n+1)(n+2)
+an=
-2
(n+1)(n+2)
+an+
1
n(n+1)

由此得 2(an+1+
1
(n+1)(n+2)
)=an+
1
n(n+1)

bn=an+
1
n(n+1)
b1=a1+
1
2
=
1
2
(把n=1代入题意中的式子易求得a1=0),
bn+1=
1
2
bn
,故bn=
1
2n
,所以an=
1
2n
-
1
n(n+1)

故答案为:
1
2n
-
1
n(n+1)
点评:本题为数列通项公式的求解,通过变形构造等比数列是解决问题的关键,属中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网