题目内容
设数列{an}的前n项和Sn满足:Sn+an=
,n=1,2,…,则通项an=
-
-
.
| n-1 |
| n(n+1) |
| 1 |
| 2n |
| 1 |
| n(n+1) |
| 1 |
| 2n |
| 1 |
| n(n+1) |
分析:通过一系列变形得到2(an+1+
)=an+
,构造新数列bn=an+
可知bn+1=
bn即数列{bn}为等比数列,通过等比数列的知识可求得通项.
| 1 |
| (n+1)(n+2) |
| 1 |
| n(n+1) |
| 1 |
| n(n+1) |
| 1 |
| 2 |
解答:解:∵Sn+an=
∴Sn=
-an,Sn+1=
-an+1
∴an+1=Sn+1-Sn=
-an+1-
+an,
即 2an+1=
-
+an=
+an=
+an=
+an+
,
由此得 2(an+1+
)=an+
.
令bn=an+
,b1=a1+
=
(把n=1代入题意中的式子易求得a1=0),
有bn+1=
bn,故bn=
,所以an=
-
.
故答案为:
-
| n-1 |
| n(n+1) |
∴Sn=
| n-1 |
| n(n+1) |
| n |
| (n+2)(n+1) |
∴an+1=Sn+1-Sn=
| n |
| (n+1)(n+2) |
| n-1 |
| n(n+1) |
即 2an+1=
| n |
| (n+1)(n+2) |
| n-1 |
| n(n+1) |
| -n+2 |
| n(n+1)(n+2) |
| n+2-2n |
| n(n+1)(n+2) |
| -2 |
| (n+1)(n+2) |
| 1 |
| n(n+1) |
由此得 2(an+1+
| 1 |
| (n+1)(n+2) |
| 1 |
| n(n+1) |
令bn=an+
| 1 |
| n(n+1) |
| 1 |
| 2 |
| 1 |
| 2 |
有bn+1=
| 1 |
| 2 |
| 1 |
| 2n |
| 1 |
| 2n |
| 1 |
| n(n+1) |
故答案为:
| 1 |
| 2n |
| 1 |
| n(n+1) |
点评:本题为数列通项公式的求解,通过变形构造等比数列是解决问题的关键,属中档题.
练习册系列答案
相关题目