题目内容
已知函数f(x)=
-x(0<x<
).
(Ⅰ)求f′(
);
(Ⅱ)求证:不等式sin3x>x3cosx在x∈(0,
)上恒成立;
(Ⅲ)求g(x)=
-
在x∈(0,
]的最大值.
| sinx | |||
|
| π |
| 2 |
(Ⅰ)求f′(
| π |
| 4 |
(Ⅱ)求证:不等式sin3x>x3cosx在x∈(0,
| π |
| 2 |
(Ⅲ)求g(x)=
| 1 |
| sin2x |
| 1 |
| x2 |
| π |
| 4 |
(本小题满分14分)
(Ⅰ)∵f′(x)=
-1=
-1=cos
x+
sin2xcos-
x-1…(3分)
∴f′(
)=cos
+
sin2
cos-
-1=
-1…(5分)
(Ⅱ)由(Ⅰ)知f′(x)=cos
x+
sin2xcos-
x-1,其中f(0)=0
令G(x)=f'(x),则G′(x)=
cos-
x•(-sinx)+
[2sinxcosxcos-
x+sin2x•(-
)•cos-
x•(-sinx)]
=
sin3xcos-
x>0在x∈(0,
)上恒成立
故G(x)在(0,
)上为增函数,故f′(x)>f′(0)=0,…(8分)
所以f(x)在(0,
)上为增函数,故f(x)>f(0)=0,
即sin3x>x3cosx,…(10分)
(Ⅲ)由(Ⅱ)可知sin3x-x3cosx>0在x∈(0,
]上恒成立.
则g′(x)=
>0在x∈(0,
]上恒成立. …(12分)
即g(x)在x∈(0,
]单调递增
于是g(x)max=g(
)=2-
…(14分)
(Ⅰ)∵f′(x)=
cosx
| ||||||
|
| 3cos2x+sin2x | |||
3cosx
|
| 2 |
| 3 |
| 1 |
| 3 |
| 4 |
| 3 |
∴f′(
| π |
| 4 |
| 2 |
| 3 |
| π |
| 4 |
| 1 |
| 3 |
| π |
| 4 |
| 4 |
| 3 |
| π |
| 4 |
| 2 |
| 3 |
| 3 | 4 |
(Ⅱ)由(Ⅰ)知f′(x)=cos
| 2 |
| 3 |
| 1 |
| 3 |
| 4 |
| 3 |
令G(x)=f'(x),则G′(x)=
| 2 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
| 4 |
| 3 |
| 4 |
| 3 |
| 7 |
| 3 |
=
| 4 |
| 9 |
| 7 |
| 3 |
| π |
| 2 |
故G(x)在(0,
| π |
| 2 |
所以f(x)在(0,
| π |
| 2 |
即sin3x>x3cosx,…(10分)
(Ⅲ)由(Ⅱ)可知sin3x-x3cosx>0在x∈(0,
| π |
| 4 |
则g′(x)=
| 2(sin3x-x3cosx) |
| x3sin3x |
| π |
| 4 |
即g(x)在x∈(0,
| π |
| 4 |
于是g(x)max=g(
| π |
| 4 |
| 16 |
| π2 |
练习册系列答案
相关题目