ÌâÄ¿ÄÚÈÝ
¸ø³öÏÂÁÐËĸöÃüÌ⣺¢ÙÒÑÖª
¢ÚÈôº¯Êýy=£¨a+b£©cos2x+£¨a-b£©sin2x£¨x¡ÊR£©µÄÖµºãµÈÓÚ2£¬Ôòµã£¨a£¬b£©¹ØÓÚÔµã¶Ô³ÆµÄµãµÄ×ø±êÊÇ£¨0£¬-2£©£»
¢Ûº¯Êý
¢ÜÒÑÖªº¯Êýf£¨x£©=ax2+£¨b+c£©x+1£¨a¡Ù0£©ÊÇżº¯Êý£¬Æä¶¨ÒåÓòΪ[a-c£¬b]£¬Ôòµã£¨a£¬b£©µÄ¹ì¼£ÊÇÖ±Ïߣ»
¢ÝPÊÇ¡÷ABC±ßBCµÄÖÐÏßADÉÏÒìÓÚA¡¢DµÄ¶¯µã£¬AD=3£¬Ôò
ÆäÖÐËùÓÐÕýÈ·ÃüÌâµÄÐòºÅÊÇ £®
¡¾´ð°¸¡¿·ÖÎö£º¢Ù¸ù¾Ý
ÔÚ
·½ÏòÉϵÄͶӰΪ
£¬¿ÉµÃ½áÂÛ£»
¢ÚÏÈÇóµã£¨a£¬b£©£¬¼´¿ÉµÃ³ö½áÂÛ£»
¢Ûy=lgxÔÚ£¨0£¬+¡Þ£©ÉÏÊÇÔöº¯Êý£¬¿ÉµÃº¯Êý
ÔÚ£¨0£¬+¡Þ£©ÉÏÊǼõº¯Êý£»
¢ÜÀûÓú¯ÊýÊÇżº¯Êý£¬Çó³öb+cµÄÖµ£¬È·¶¨a-c£¬bµÄ¹ØÏµ£¬Çó³öµã£¨a£¬b£©Âú×ãµÄ¹ØÏµ£¬¼´¿ÉµÃµ½£»
¢Ý|AP|=t£¬t¡Ê£¨0£¬3£©£¬Ôò|PD|=3-t£¬¹Ê
=
=-2t£¨3-t£©=2t2-6t£¬ÀûÓÃÅä·½·¨¿ÉµÃ½áÂÛ£®
½â´ð£º½â£º¢ÙÒÑÖª
£¬Ôò
ÔÚ
·½ÏòÉϵÄͶӰΪ
=4£¬¹ÊÊÇÕæÃüÌ⣻
¢Ú¡ßº¯Êýy=£¨a+b£©cos2x+£¨a-b£©sin2x=£¨a-b£©+2bcos2xµÄÖµºãµÈÓÚ2£¬¡à
£¬¡àa=2£¬b=0£¬¡àµã£¨a£¬b£©¹ØÓÚÔµã¶Ô³ÆµÄµãµÄ×ø±êÊÇ£¨-2£¬0£©£¬¹ÊÊǼÙÃüÌ⣻
¢Û¡ßy=lgxÔÚ£¨0£¬+¡Þ£©ÉÏÊÇÔöº¯Êý£¬¡àº¯Êý
ÔÚ£¨0£¬+¡Þ£©ÉÏÊǼõº¯Êý£¬¹ÊÊÇÕæÃüÌ⣻
¢Üº¯Êýf£¨x£©=ax2+£¨b+c£©x+1£¨a¡Ù0£©ÊÇżº¯Êý£¬Æä¶¨ÒåÓòΪ[a-c£¬b]£¬ËùÒÔb+c=0£¬²¢ÇÒb=c-a£¬ËùÒÔb=-b-a£¬¼´b=-
a£¬ËùÒԵ㣨a£¬b£©µÄ¹ì¼£ÊÇÖ±Ïߣ¬¹ÊÊÇÕæÃüÌ⣻
¢ÝÉè|AP|=t£¬t¡Ê£¨0£¬3£©£¬Ôò|PD|=3-t£¬¡à
=
=-2t£¨3-t£©=2t2-6t=
£¬¡ßt¡Ê£¨0£¬3£©£¬¡à
µÄȡֵ·¶Î§ÊÇ
£¬¹ÊÊÇÕæÃüÌ⣮
¹Ê´ð°¸Îª£º¢Ù¢Û¢Ü¢Ý
µãÆÀ£º±¾Ì⿼²éÃüÌâÕæ¼ÙµÄÅж¨£¬¿¼²éÏòÁ¿ÖªÊ¶µÄÔËÓ㬿¼²éº¯ÊýµÄÐÔÖÊ£¬ÊôÓÚÖеµÌ⣮
¢ÚÏÈÇóµã£¨a£¬b£©£¬¼´¿ÉµÃ³ö½áÂÛ£»
¢Ûy=lgxÔÚ£¨0£¬+¡Þ£©ÉÏÊÇÔöº¯Êý£¬¿ÉµÃº¯Êý
¢ÜÀûÓú¯ÊýÊÇżº¯Êý£¬Çó³öb+cµÄÖµ£¬È·¶¨a-c£¬bµÄ¹ØÏµ£¬Çó³öµã£¨a£¬b£©Âú×ãµÄ¹ØÏµ£¬¼´¿ÉµÃµ½£»
¢Ý|AP|=t£¬t¡Ê£¨0£¬3£©£¬Ôò|PD|=3-t£¬¹Ê
½â´ð£º½â£º¢ÙÒÑÖª
¢Ú¡ßº¯Êýy=£¨a+b£©cos2x+£¨a-b£©sin2x=£¨a-b£©+2bcos2xµÄÖµºãµÈÓÚ2£¬¡à
¢Û¡ßy=lgxÔÚ£¨0£¬+¡Þ£©ÉÏÊÇÔöº¯Êý£¬¡àº¯Êý
¢Üº¯Êýf£¨x£©=ax2+£¨b+c£©x+1£¨a¡Ù0£©ÊÇżº¯Êý£¬Æä¶¨ÒåÓòΪ[a-c£¬b]£¬ËùÒÔb+c=0£¬²¢ÇÒb=c-a£¬ËùÒÔb=-b-a£¬¼´b=-
¢ÝÉè|AP|=t£¬t¡Ê£¨0£¬3£©£¬Ôò|PD|=3-t£¬¡à
¹Ê´ð°¸Îª£º¢Ù¢Û¢Ü¢Ý
µãÆÀ£º±¾Ì⿼²éÃüÌâÕæ¼ÙµÄÅж¨£¬¿¼²éÏòÁ¿ÖªÊ¶µÄÔËÓ㬿¼²éº¯ÊýµÄÐÔÖÊ£¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿