题目内容

在等差数列{an}和等比数列{bn}中,a1=b1=1,b4=8,{an}的前10项和S10=55.
(Ⅰ)求an和bn
(Ⅱ)已知cn=an+bn求cn的前n项之和Tn
(Ⅰ)设等差数列的公差为d,等比数列的公比为q.
∵a1=b1=1,b4=8,{an}的前10项和S10=55.
∴S10=10+
10×9
2
d=55;b4=q3=8;
解得:d=1,q=2.
所以:an=n,bn=2n-1
(Ⅱ)∵an=n,bn=2n-1,∴cn=an+bn=n+2n-1
∴{cn}前n项之和Tn=(1+2+3+…+n)+(1+2+4+…+2n-1
=
n(n+1)
2
+
1-2n
1-2

=
n(n+1)
2
+2n-1
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网