题目内容

已知C0:x2+y2=1和C1
x2
a2
+
y2
b2
=1 (a>b>0).试问:当且仅当a,b满足什么条件时,对C1上任意一点P,均存在以P为顶点,与C0外切,与C1内接的平行四边形?并证明你的结论.
分析:利用PQRS是与C0外切,与C1内接的平行四边形,可得PQRS是菱形,于是OP⊥OQ,设出P,Q的坐标,在直角△POQ中,可得
1
r
2
1
+
1
r
2
2
=1
,利用点在曲线上,即可求得结论.
解答:解:设PQRS是与C0外切,与C1内接的平行四边形,则PQRS是菱形,于是OP⊥OQ

设P(r1cosθ,r1sinθ),Q(r2cos(θ+90°),r2sin(θ+90°)),
则在直角△POQ中,
r
2
1
+
r
2
2
=
r
2
1
r
2
2
,即
1
r
2
1
+
1
r
2
2
=1

r
2
1
cos2θ
a2
+
r
2
1
sin2θ
b2
=1,即
1
r
2
1
=
cos2θ
a2
+
sin2θ
b2

同理,
1
r
2
2
=
sin2θ
a2
+
cos2θ
b2
,相加可得
1
a2
+
1
b2
=1

反之,若
1
a2
+
1
b2
=1
成立,则取P(r1cosθ,r1sinθ),Q(r2cos(θ+90°),r2sin(θ+90°)),
可得即
1
r
2
1
=
cos2θ
a2
+
sin2θ
b2
1
r
2
2
=
sin2θ
a2
+
cos2θ
b2

1
r
2
1
+
1
r
2
2
=
1
a2
+
1
b2
=1

此时PQ与C2相切,即存在满足条件的平行四边形.
点评:本题考查圆与椭圆知识的综合,考查学生的分析解决问题能力,考查计算能力,综合性强.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网