题目内容

在椭圆
x2
a2
+
y2
b2
=1(a>b>0)
上有一点M,F1,F2是椭圆的两个焦点,若|MF1|•|MF2|=2b2,则椭圆离心率的范围是(  )
分析:利用椭圆的定义,通过平方推出与|MF1|•|MF2|=2b2的关系以及在△MF1F2中,由余弦定理,判断三角形的形状,然后求出椭圆的离心率.
解答:解:由椭圆定义可知:|MF1|+|MF2|=2a,
所以|MF1|2+|MF2|2+2|MF1|•|MF2|=4a2…①,
在△MF1F2中,由余弦定理可知|MF1|2+|MF2|2-2|MF1|•|MF2|cosθ=4c2…②
|MF1|•|MF2|=2b2,…③,
由①②③可得:4c2=4a2-4b2-2|MF1|•|MF2|cosθ.
所以|MF1|•|MF2|cosθ=0.
所以c≥b,即c2≥b2=a2-c2,2c2≥a2e2
1
2

所以e∈[
2
2
,1)

故选B.
点评:本题考查椭圆的离心率的求法,考查余弦定理的应用,椭圆的定义,考查计算能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网