题目内容
节日前夕,小李在家门前的树上挂了两串彩灯,这两串彩灯的第一次闪亮相互独立,且都在通电后的4秒内任一时刻等可能发生,然后每串彩灯以4秒为间隔闪亮,那么这两串彩灯同时同时通电后,它们第一次闪亮的时候相差不超过2秒的概率是( )A.
B.
C.
D.
【答案】分析:设两串彩灯第一次闪亮的时刻分别为x,y,由题意可得0≤x≤4,0≤y≤4,要满足条件须|x-y|≤2,作出其对应的平面区域,由几何概型可得答案.
解答:解:设两串彩灯第一次闪亮的时刻分别为x,y,
由题意可得0≤x≤4,0≤y≤4,
它们第一次闪亮的时候相差不超过2秒,则|x-y|≤2,
由几何概型可得所求概率为上述两平面区域的面积之比,

由图可知所求的概率为:
=
故选C
点评:本题考查几何概型,涉及用一元二次方程组表示平面区域,属基础题.
解答:解:设两串彩灯第一次闪亮的时刻分别为x,y,
由题意可得0≤x≤4,0≤y≤4,
它们第一次闪亮的时候相差不超过2秒,则|x-y|≤2,
由几何概型可得所求概率为上述两平面区域的面积之比,
由图可知所求的概率为:
故选C
点评:本题考查几何概型,涉及用一元二次方程组表示平面区域,属基础题.
练习册系列答案
相关题目