题目内容

已知命题p:关于并的方程戈x2-x+a=0无实根,命题q:关于x的函数y=-x2-ax+1在[-1,+∞)上是减函数.若?q是真命题,p∨q是真命题,则实数a的取值范围是(  )
A.[2,+∞)B.[
1
4
,+∞)
C.(
1
4
,2)
D.(-∞,
1
4
)∪(2,+∞)
若命题p为真,则有△=1-4a<0,解得a
1
4
,即p:a
1
4

若命题q为真,则有-
a
2
≤-1
,解得a≥2.若?q是真命题,则q为假命题,又p∨q是真命题,所以p为真命题.
a>
1
4
a<2
,解得
1
4
<a<2
,即实数a的取值范围是(
1
4
,2
).
故选C.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网