题目内容

已知函数y=f(x),x∈N*,y∈N*,满足:①对任意,都有x1f(x1)+x2f(x2)>x1f(x2)+x2f(x1);②对任意n∈N*都有f[f(n)]=3n.
(1)试证明:f(x)为N*上的单调增函数;
(2)求f(1)+f(6)+f(30);
(3)令,试证明:,判断Sn的大小(不需要证明)

解:(1)由①知,对任意a,b∈N*,a<b,都有(a﹣b)(f(a)﹣f(b))>0,
由于a﹣b<0,从而f(a)<f(b),
所以函数f(x)为N*上的单调增函数. 
(2)令f(1)=a,则a>1,显然a≠1,
否则f(f(1))=f(1)=1,与f(f(1))=3矛盾.
从而a>1,而由f(f(1))=3,
即得f(a)=3.
又由(I)知f(a)>f(1)=a,
即a<3.
于是得1<a<3,
又a∈N*,从而a=2,即f(1)=2. 
而由f(a)=3知,f(2)=3.
于是f(3)=f(f(2))=3×2=6,
  f(6)=f(f(3))=3×3=9,
f(9)=f(f(6))=3×6=18,
f(18)=f(f(9))=3×9=27,
 f(27)=f(f(18))=3×18=54,
f(54)=f(f(27))=3×27=81,
由于54﹣27=81﹣54=27,
而且由(I)知,函数f(x)为单调增函数,
因此f(30)=54+3=57.
从而f(1)+f(6)+f(30)=2+9+57=68. 
(3),a1=f(3)=6.
即数列{an}是以6为首项,以3为公比的等比数列.

于是
显然

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网