题目内容
【题目】已知
,函数
.
(Ⅰ)当
时,求曲线
在点
处的切线方程.
(Ⅱ)求
在区间
上的最小值.
【答案】(
)
.(
)见解析.
【解析】试题分析:(1)求出f'(x),得切线的斜率
,又曲线的切点为(2,f(2)),由点斜式可写出切线方程;
(2)借助于导数,将函数
的最值问题转化为导函数进行研究.分
,
,
三种情况讨论函数的最值情况.
试题解析:(
)当
时,
,
,
∴
,
,
∴
,即曲线
在点
处的切线斜率为
.
又∵
,
∴曲线
在点
处的切线方程为
,
即
.
(
)∵
,∴
.
令
,得
.
①若
,则
,
在区间
上单调递增,此时函数
无最小值.
②若
,当
时,
,函数
在区间
上单调递减,
当
时,
,函数
在区间
上单调递增,
所以当
时,函数
取得最小值
.
③当
,则当
时,
,函数
在区间
上单调递减,
所以当
时,函数
取得最小值
.
综上所述,当
时,函数
在区间
上无最小值.
当
时,函数
在区间
上的最小值为
.
当
时,函数
在区间
上的最小值为
.
练习册系列答案
相关题目
【题目】某花店每天以每枝
元的价格从农场购进若干枝玫瑰花,然后以每枝
元的价格出售.如果当天卖不完,剩下的玫瑰花做垃圾处理.
(1)若花店一天购进
枝玫瑰花,求当天的利润
(单位:元)关于当天需求量
(单位:枝,
)的函数解析式.
(2)花店记录了
天玫瑰花的日需求量(单位:枝),整理得下表:
日需求量 |
|
|
|
|
|
|
|
频数 |
|
|
|
|
|
|
|
假设花店在这
天内每天购进
枝玫瑰花,求这
天的日利润(单位:元)的平均数.