题目内容
动点P(a,b)在不等式组为:
表示的平面区域内部及边界上运动,则
的取值范围是 ________.
(-∞,-2]∪[2,+∞)
分析:根据条件画出可行域,
,再利用几何意义求最值,只需求出可行域内点和点(1,2)连线的斜率的最值,从而得到w的取值范围即可.
解答:
解:根据约束条件画出可行域,
,表示可行域内点Q和点P(1,2)连线的斜率的最值,
当Q点在原点O时,直线PQ的斜率为2,当Q点在可行域内的点B处时,直线PQ的斜率为-2,
结合直线PQ的位置可得,当点Q在可行域内运动时,其斜率的取值范围是:
(-∞,-2]∪[2,+∞)
从而得到w的取值范围(-∞,-2]∪[2,+∞).
故答案为:(-∞,-2]∪[2,+∞).
点评:本题主要考查了简单的线性规划,以及利用分式函数的几何意义为可行域内的点(x,y)和另一个定点的直线斜率求最值,属于基础题.
分析:根据条件画出可行域,
解答:
当Q点在原点O时,直线PQ的斜率为2,当Q点在可行域内的点B处时,直线PQ的斜率为-2,
结合直线PQ的位置可得,当点Q在可行域内运动时,其斜率的取值范围是:
(-∞,-2]∪[2,+∞)
从而得到w的取值范围(-∞,-2]∪[2,+∞).
故答案为:(-∞,-2]∪[2,+∞).
点评:本题主要考查了简单的线性规划,以及利用分式函数的几何意义为可行域内的点(x,y)和另一个定点的直线斜率求最值,属于基础题.
练习册系列答案
相关题目