题目内容
已知函数f(x)=1+
| ||||
sin(
|
(Ⅰ)求函数f(x)的定义域;
(Ⅱ)求f(x)在区间[-
| π |
| 4 |
| π |
| 2 |
分析:(Ⅰ)因sin(
-x)≠0,得角(
-x)的终边不在x轴上,即
-x≠kπ+,k是整数.
(Ⅱ)化简函数解析式到关于某个角的三角函数的形式,再利用函数在此区间上的单调性求出此函数的最大值和最小值.
| π |
| 2 |
| π |
| 2 |
| π |
| 2 |
(Ⅱ)化简函数解析式到关于某个角的三角函数的形式,再利用函数在此区间上的单调性求出此函数的最大值和最小值.
解答:解:(Ⅰ)由题意sin(
-x)≠0,∴
-x≠kπ,k∈Z,∴x≠
+kπ,k∈Z,
故所求定义域为{x|x≠
+kπ,k∈Z} (4分)
(Ⅱ)f(x)=
=
=
=2cosx+2sinx=2
sin(x+
)(9分)
∵-
≤x<
,∴0≤x+
<
,(10分)
∴当x+
=0即x=-
时,f(x)min=0;
当x+
=
即x=
时,f(x)max=2
.(12分)
| π |
| 2 |
| π |
| 2 |
| π |
| 2 |
故所求定义域为{x|x≠
| π |
| 2 |
(Ⅱ)f(x)=
1+
| ||||
sin(
|
| 1+cos2x+sin2x |
| cosx |
=
| 2cos2x+2sinxcosx |
| cosx |
| 2 |
| π |
| 4 |
∵-
| π |
| 4 |
| π |
| 2 |
| π |
| 4 |
| 3π |
| 4 |
∴当x+
| π |
| 4 |
| π |
| 4 |
当x+
| π |
| 4 |
| π |
| 2 |
| π |
| 4 |
| 2 |
点评:本题考查利用诱导公式化简三角函数式、求三角函数的定义域、值域.
练习册系列答案
相关题目