题目内容
已知f(x)是奇函数,在(-1,1)上是减函数,且满足f(1-a)+f(1-a2)<0,求实数a的范围.?
解:要求a的取值范围,先要列出关于a的不等式,这需要根据原条件,然后根据减函数的定义由函数值逆推出自变量的关系.
由f(1-a)+f(1-a2)<0,得f(1-a)<-f(1-a2).?
∵f(x)是奇函数,∴-f(1-a2)=f(a2-1).?
于是f(1-a)<f(a2-1).?
又由于f(x)在(-1,1)上是减函数,因此
解之,得0<a<1.
练习册系列答案
相关题目