题目内容

11.如图,在五面体ABCDEF中,四边形ABCD为正方形,EF∥AD,平面ADEF⊥平面ABCD,且BC=2EF,AE=AF,点G为EF中点.
(1)求证:AG⊥CD:
(2)在线段AC上是否存在点M,使得GM∥平面ABF?若存在,求出AM:MC的值;若不存在,说明理由.

分析 (1)根据等腰三角形AG⊥EF.推证 AG⊥AD,AG⊥平面ABCD,线面的转化 AG⊥CD.
(2)根据中点推证GF∥MN,GF=MN.四边形GFNM是平行四边形. 由直线平面平行的判定定理推证GM∥平面ABF;

解答 解:(1)证明:因为AE=AF,点G是EF的中点,
所以 AG⊥EF.
又因为 EF∥AD,
所以 AG⊥AD.
因为平面ADEF⊥平面ABCD,且平面ADEF∩平面ABCD=AD,AG?平面ADEF,
所以 AG⊥平面ABCD.
因为 CD?平面ABCD,
所以 AG⊥CD.
(2)存在点M在线段AC上,且 $\frac{AM}{MC}$=$\frac{1}{3}$,使得:GM∥平面ABF.
证明:如图,过点M作MN∥BC,且交AB于点N,连结NF,
因为 $\frac{AM}{MC}$=$\frac{1}{3}$,所以$\frac{MN}{BC}$=$\frac{AM}{AC}$=$\frac{1}{4}$,
因为 BC=2EF,点G是EF的中点,
所以 BC=4GF,
又因为 EF∥AD,四边形ABCD为正方形,
所以 GF∥MN,GF=MN.
所以四边形GFNM是平行四边形.
所以 GM∥FN.
又因为GM?平面ABF,FN?平面ABF,
所以 GM∥平面ABF.

点评 本题考查了空间几何体的性质,空间直线的位置关系,直线平面的平行关系,掌握好定理,转化直线的为关系判断即可,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网