题目内容

已知函数f(x)=
1+ln(x+1)
x
(x>0)

(Ⅰ)函数f(x)在区间(0,+∞)上是增函数还是减函数?证明你的结论;
(Ⅱ)当x>0时,f(x)>
k
x+1
恒成立,求整数k的最大值;
(Ⅲ)试证明:(1+1•2)•(1+2•3)•(1+3•4)•…•(1+n(n+1))>e2n-3
分析:(Ⅰ)求导函数,确定导数的符号,即可得到结论;
(Ⅱ)当x>0时,f(x)>
k
x+1
恒成立,即k<
x+1
x
[1+ln(x+1)]
在(0,+∞)上恒成立,构造函数,求出函数的最小值,即可求整数k的最大值;
(Ⅲ)由(Ⅱ)知:
1+ln(x+1)
x
3
x+1
(x>0)
,从而令x=n(n+1),ln[1+n(n+1)]>2-
3
n(n+1)
=2-3(
1
n
-
1
n+1
)
,即可证得结论.
解答:(Ⅰ)解:由题x>0,f′(x)=-
[
1
x+1
+ln(x+1)]
x2
<0
,…(2分)
故f(x)在区间(0,+∞)上是减函数;…(3分)
(Ⅱ)解:当x>0时,f(x)>
k
x+1
恒成立,即k<
x+1
x
[1+ln(x+1)]
在(0,+∞)上恒成立,
h(x)=
x+1
x
[1+ln(x+1)]
,则h′(x)=
x-1-ln(x+1)
x2
,…(5分)
再取g(x)=x-1-ln(x+1),则g′(x)=1-
1
x+1
=
x
x+1
>0

故g(x)在(0,+∞)上单调递增,
而g(1)=-ln2<0,g(2)=1-ln3<0,g(3)=2-2ln2>0,…(7分)
故g(x)=0在(0,+∞)上存在唯一实数根a∈(2,3),a-1-ln(a+1)=0,
故x∈(0,a)时,g(x)<0;x∈(a,+∞)时,g(x)>0,
h(x)min=
a+1
a
[1+ln(a+1)]=a+1∈(3,4),k≤3
,故kmax=3…(8分)
(Ⅲ)证明:由(Ⅱ)知:
1+ln(x+1)
x
3
x+1
(x>0)
,∴ln(x+1)>
3x
x+1
-1=2-
3
x+1
>2-
3
x

x=n(n+1),ln[1+n(n+1)]>2-
3
n(n+1)
=2-3(
1
n
-
1
n+1
)
,…(10分)
又ln[(1+1•2)•(1+2•3)•(1+3•4)•…•(1+n(n+1))]=ln(1+1×2)+ln(1+2×3)+…+ln(1+n×(n+1))>2n-3[(1-
1
2
)+(
1
2
-
1
3
)+…+(
1
n
-
1
n+1
)]
=2n-3(1-
1
n+1
)=2n-3+
3
n+1
>2n-3

即:(1+1•2)•(1+2•3)•(1+3•4)•…•[1+n(n+1)]>e2n-3…(14分)
点评:本题考查导数知识的运用,考查函数的单调性,考查恒成立问题,考查不等式的证明,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网