题目内容
(2013•鹰潭一模)已知双曲线
-
=1(a>0,b>0)的离心率e=2,过双曲线上一点M作直线MA,MB交双曲线于A,B两点,且斜率分别为k1,k2.若直线AB过原点,则k1•k2的值为
| x2 |
| a2 |
| y2 |
| b2 |
3
3
.分析:设点,求出斜率,代入双曲线方程,两方程相减,结合双曲线的离心率,即可求得结论.
解答:解:设M(x,y),A(x1,y1),B(-x1,-y1),则k1=
,k2=
∴k1•k2=
•
=
∵
-
=1,
-
=1
∴两式相减可得
-
=0
∴
=
∵双曲线的离心率e=2,
∴
=4
∴
=
=3
∴k1•k2=3
故答案为3.
| y-y1 |
| x-x1 |
| y+y1 |
| x+x1 |
∴k1•k2=
| y-y1 |
| x-x1 |
| y+y1 |
| x+x1 |
| y2-y12 |
| x2-x12 |
∵
| x2 |
| a2 |
| y2 |
| b2 |
| x12 |
| a2 |
| y12 |
| b2 |
∴两式相减可得
| x2-x12 |
| a2 |
| y2-y12 |
| b2 |
∴
| y2-y12 |
| x2-x12 |
| b2 |
| a2 |
∵双曲线的离心率e=2,
∴
| a2+b2 |
| a2 |
∴
| y2-y12 |
| x2-x12 |
| b2 |
| a2 |
∴k1•k2=3
故答案为3.
点评:本题考查双曲线的几何性质,考查斜率的计算,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关题目