题目内容
已知函数f(x)=(
+
)2(x>0),设正项数列an的首项a1=2,前n 项和Sn满足Sn=f(Sn-1)(n>1,且n∈N*).
(1)求an的表达式;
(2)在平面直角坐标系内,直线ln的斜率为an,且ln与曲线y=x2相切,ln又与y轴交于点Dn(0,bn),当n∈N*时,记dn=
|
|-1,若Cn=
,求数列cn的前n 项和Tn.
| x |
| 2 |
(1)求an的表达式;
(2)在平面直角坐标系内,直线ln的斜率为an,且ln与曲线y=x2相切,ln又与y轴交于点Dn(0,bn),当n∈N*时,记dn=
| 1 |
| 4 |
| Dn+1Dn |
| ||||
| 2dn+1dn |
(1)由Sn=(
+
)2得:
-
=
,所以数列{
}是以
为公差的等差数列.
∴
=
n,Sn=2n2,an=Sn-Sn-1=4n-2(n≥2),又a1=2.∴an=4n-2(n∈N*)
(2)设ln:y=anx+bn,由
?x2-anx-b n=0,
据题意方程有相等实根,
∴△=an2+4bn=0,
∴bn=-
an2=-
(4n-2)2=-(2n-1)2,
当n∈N+时,dn=
|bn-bn+1|-1=
|-(2n-1)2+(2n+1)2|-1=2n-1,
∴Cn=
=
=
=1+(
-
),
∴Tn=C1+C2+C3+…+Cn=n+(1-
)+(
-
)+(
-
)+…+(
-
)
=n+1-
=
.
| Sn-1 |
| 2 |
| Sn |
| Sn-1 |
| 2 |
| Sn |
| 2 |
∴
| Sn |
| 2 |
(2)设ln:y=anx+bn,由
|
据题意方程有相等实根,
∴△=an2+4bn=0,
∴bn=-
| 1 |
| 4 |
| 1 |
| 4 |
当n∈N+时,dn=
| 1 |
| 4 |
| 1 |
| 4 |
∴Cn=
| (2n+1)2+(2n-1)2 |
| 2(4n2-1) |
| 8n2+2 |
| 2(4n2-1) |
| 4n2+1 |
| 4n2-1 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
∴Tn=C1+C2+C3+…+Cn=n+(1-
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 5 |
| 1 |
| 7 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
=n+1-
| 1 |
| 2n+1 |
| 2n2+3n |
| 2n+1 |
练习册系列答案
相关题目
|
A、(
| ||||
B、(
| ||||
C、(
| ||||
D、[
|