题目内容
已知数列{an}的前n项和是Sn,且满足Sn=2an-1.
(1)求数列{an}的通项公式;
(2)若数列{bn}满足an•bn=2n-1,求数列{bn}的前n项和Tn.
(1)求数列{an}的通项公式;
(2)若数列{bn}满足an•bn=2n-1,求数列{bn}的前n项和Tn.
分析:(1)由Sn=2an-1⇒a1=1,当n≥2时,an=Sn-Sn-1⇒an=2an-1,从而可知数列{an}是以1为首项,2为公比的等比数列,继而可得数列{an}的通项公式;
(2)易求bn=
=
,利用错位相减法即可求得数列{bn}的前n项和Tn.
(2)易求bn=
| 2n-1 |
| an |
| 2n-1 |
| 2n-1 |
解答:解:(1)∵Sn=2an-1,
∴S1=2a1-1,
∴a1=1.
当n≥2时,an=Sn-Sn-1=2an-1-(2an-1-1)=2an-2an-1,
∴an=2an-1,
∴数列{an}是以1为首项,2为公比的等比数列,
∴an=2n-1.
(2)∵an•bn=2n-1,
∴bn=
=
,
∴Tn=b1+b2+…+bn=1+
+
+…+
,①
Tn=
+
+…+
+
,②
①-②得:
Tn=1+1+
+…+
-
=1+1+
+
+…+
-
=1+
-
=1+2-
,
∴Tn=6-
.
∴S1=2a1-1,
∴a1=1.
当n≥2时,an=Sn-Sn-1=2an-1-(2an-1-1)=2an-2an-1,
∴an=2an-1,
∴数列{an}是以1为首项,2为公比的等比数列,
∴an=2n-1.
(2)∵an•bn=2n-1,
∴bn=
| 2n-1 |
| an |
| 2n-1 |
| 2n-1 |
∴Tn=b1+b2+…+bn=1+
| 3 |
| 2 |
| 5 |
| 22 |
| 2n-1 |
| 2n-1 |
| 1 |
| 2 |
| 1 |
| 2 |
| 3 |
| 22 |
| 2n-3 |
| 2n-1 |
| 2n-1 |
| 2n |
①-②得:
| 1 |
| 2 |
| 2 |
| 22 |
| 2 |
| 2n-1 |
| 2n-1 |
| 2n |
=1+1+
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 2n-2 |
| 2n-1 |
| 2n |
=1+
[1-(
| ||
1-
|
| 2n-1 |
| 2n |
=1+2-
| 3+2n |
| 2n |
∴Tn=6-
| 3+2n |
| 2n-1 |
点评:本题考查数列的求和,着重考查等比关系的确定及错位相减法求和,属于中档题.
练习册系列答案
相关题目
已知数列{an}的前n项和Sn=an2+bn(a、b∈R),且S25=100,则a12+a14等于( )
| A、16 | B、8 | C、4 | D、不确定 |