题目内容
椭圆=1与=1(0<k<9)的关系为
A.有相等的长、短轴
B.有相等的焦距
C.有相同的焦点
D.有相同的顶点
A.有相等的长、短轴 B.有相等的焦距
C.有相同的焦点 D.有相同的准线
已知椭圆C:+=1(a>b>0)的焦距为4,且与椭圆x2+=1有相同的离心率,斜率为k的直线l经过点M(0,1),与椭圆C交于不同的两点A、B.
(1)求椭圆C的标准方程;
(2)当椭圆C的右焦点F在以AB为直径的圆内时,求k的取值范围.
若椭圆C1:+=1(0<b<2)的离心率等于,抛物线C2:x2=2py(p>0)的焦点在椭圆C1的顶点上.
(Ⅰ)求抛物线C2的方程;
(Ⅱ)若过M(-1,0)的直线l与抛物线C2交于E、F两点,又过E、F作抛物线C2的切线l1、l2,当l1⊥l2时,求直线l的方程.
已知点P(4,4),圆C:(x-m)2+y2=5(m<3) 与椭圆E:+=1(a>b>0)有一个公共点A(3,1),F1、F2分别是椭圆的左、右焦点,直线PF1与圆C相切.
(1)求m的值与椭圆E的方程;
(2)设Q为椭圆E上的一个动点,求·的取值范围.