题目内容

已知函数f(x)=x2-2ax+b2,a,b∈R.

(1)若a从集合{0,1,2,3}中任取一个元素,b从集合{0,1,2}中任取一个元素,求方程f(x)=0有两个不相等实根的概率;

(2)若a从区间[0,2]中任取一个数,b从区间[0,3]中任取一个数,求方程f(x)=0没有实根的概率.

解:(1)∵a取集合{0,1,2,3}中任一个元素,b取集合{0,1,2}中任一个元素,

∴a,b的取值的情况有(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2),(3,0),(3,1),(3,2),

其中第一个数表示a的取值,第二个数表示b的取值,

即基本事件总数为12.

设“方程f(x)=0有两个不相等的实根”为事件A,

当a≥0,b≥0时,方程f(x)=0有两个不相等实根的充要条件为a>b.

当a>b时,a,b取值的情况有(1,0),(2,0),(2,1),(3,0),(3,1),(3,2),

即A包含的基本事件数为6,

∴方程f(x)=0有两个不相等实根的概率P(A)==.

(2)∵a从区间[0,2]中任取一个数,b从区间[0,3]中任取一个数,

则试验的全部结果构成区域Ω={(a,b)|0≤a≤2,0≤b≤3},

这是一个矩形区域,其面积SΩ=2×3=6.

设“方程f(x)=0没有实根”为事件B,则事件B所构成的区域为M={(a,b)|0≤a≤2,0≤b≤3,a<b},

即图中阴影部分的梯形,其面积Sm=6×2×2=4.

由几何概型的概率计算公式可得方程f(x)=0没有实根的概率P(B)=.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网