题目内容

已知函数f(x)的定义域是数学公式,且f(x)+f(2-x)=0,数学公式,当数学公式时,f(x)=3x
(1)求证:f(x+2)=f(x)且f(x)是奇函数;
(2)求当数学公式时函数f(x)的解析式,并求x∈数学公式Z)时f(x)的解析式;
(3)当x∈数学公式时,解不等式log3f(x)>x2-(2k+2)x+2k+1.

解:(1)由
由f(x)+f(2-x)=0得f(x)+f(-x)=0,
故f(x)是奇函数.
(2)当x∈时,
∴f(1-x)=31-x

∴f(x)=3x-1
当x∈Z)时,
∴f(x-2k)=3x-2k-1
因此f(x)=f(x-2k)=3x-2k-1
(3)不等式log3f(x)>x2-(2k+2)x+2k+1
即为x-2k-1>x2-(2k+2)x+2k+1,
即x2-(2k+3)x+2(2k+1)<0,(x-2)[x-(2k+1)]<0
当2k+1<2即时,x∈(2k+1,2)与条件不符;
当2k+1=2即时,无解.
当2k+1>2即时,若时整数k不存在;
时,
综上:k≥1时 ,k<1时x∈φ
分析:(1)根据与f(x+2)=f(x)可求出f(x)与f(-x)的关系,从而确定函数的奇偶性;
(2)当x∈时,,代入已知解析式,从而求出所求,当x∈Z)时,,代入已知解析式即可求出所求;
(3)将函数解析式代入,然后讨论两根的大小,从而求出不等式的解集.
点评:本题主要考查了抽象函数及其应用,以及在给定区间上的解析式和不等式的解集等有关问题,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网