题目内容
已知数列{an}满足a1=a2=2,a3=3,an+2=
(n≥2)
(Ⅰ)求a4,a5;
(Ⅱ)是否存在实数λ,使得数列{an+1-λan}(n∈N*)是等差数列?若存在,求出所有满足条件的λ的值;若不存在,说明理由;
(Ⅲ)写出数列{an}中与987相邻的后一项(不需要过程)
| ||
| an |
(Ⅰ)求a4,a5;
(Ⅱ)是否存在实数λ,使得数列{an+1-λan}(n∈N*)是等差数列?若存在,求出所有满足条件的λ的值;若不存在,说明理由;
(Ⅲ)写出数列{an}中与987相邻的后一项(不需要过程)
(I)a4=
=
=5
a5=
=
=8
(II)假设存在实数λ,使得数列{an+1-λan}(n∈N*)是等差数列,则
2(a3-λa2)=(a2-λa1)+(a4-λa3),解得λ=1
由a3=3,a4=5,a5=8,a6=13得2(a5-a4)≠(a4-a3)-(a3-a2)与数列{an+1-an}(n∈N*)是等差数列矛盾
故不存在实数λ,使数列{an+1-λan}(n∈N*)是等差数列
(III)a2=2,a3=3,a4=5,a5=8,a6=13,猜想an+2=an+1+an(n≥2)
∴数列{an}中与987相邻的后一项为1597.
| ||
| a2 |
| 9+1 |
| 2 |
a5=
| ||
| a3 |
| 25-1 |
| 3 |
(II)假设存在实数λ,使得数列{an+1-λan}(n∈N*)是等差数列,则
2(a3-λa2)=(a2-λa1)+(a4-λa3),解得λ=1
由a3=3,a4=5,a5=8,a6=13得2(a5-a4)≠(a4-a3)-(a3-a2)与数列{an+1-an}(n∈N*)是等差数列矛盾
故不存在实数λ,使数列{an+1-λan}(n∈N*)是等差数列
(III)a2=2,a3=3,a4=5,a5=8,a6=13,猜想an+2=an+1+an(n≥2)
∴数列{an}中与987相邻的后一项为1597.
练习册系列答案
相关题目