题目内容

已知函数f(x)=(x2-a)ex,其中a≥3,e为自然对数的底数.
(1)讨论函数f(x)的单调性;
(2)求函数f(x)在区间[0,1]上的最大值.
(1)∵f(x)=(x2-a)ex,其中a≥3,
∴f′(x)=2xex+(x2-a)ex=(x2+2x-a)ex
令f′(x)>0得,x<-1-
1+a
或x>-1+
1+a

令f′(x)<0得,-1-
1+a
<x<-1+
1+a

所以函数f(x)在(-∞,-1-
1+a
)和(-1+
1+a
,+∞)上递增,在(-1-
1+a
,-1+
1+a
)上递减;
(2)由(1)知f(x)在(-∞,-1-
1+a
)和(-1+
1+a
,+∞)上递增,在(-1-
1+a
,-1+
1+a
)上递减,
又a≥3,所以-1+
1+a
≥1,则f(x)在[0,1]上单调递减,
所以当x=0时f(x)取得最大值为-a;
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网