题目内容
设
是空间三条直线,
是空间两个平面,则下列命题中,逆命题不正确的是( )
A.当
时,若
,则![]()
B.当
时,若
,则![]()
C.当
且
是
在
内的射影时,若
,则![]()
D.当
且
时,若
,则![]()
【答案】
B
【解析】
试题分析:分别写出其逆命题再判断,A、由面面平行的性质定理判断.B、也可能平行C、由三垂线定理判断.D、由线面平行的判定定理判断.
A、其逆命题是:当c⊥α时,或α∥β,则c⊥β,由面面平行的性质定理知正确.
B、其逆命题是:当b⊂α,若α⊥β,则b⊥β,也可能平行,相交.不正确.
C、其逆命题是当b⊂α,且c是a在α内的射影时,若a⊥b,则b⊥c,由三垂线定理知正确.
D、其逆命题是当b⊂α,且c⊄α时,若b∥c,则c∥α,由线面平行的判定定理知正确.
故选B
考点:本题主要考查线面平行的判定理,三垂线定理及其逆定理,面面平行的性质定理等,做这样的题目要多观察几何体效果会更好.
点评:解决该试题的关键是熟练运用线面平行的判定定理和性质定理,和线面垂直的判定定理和性质定理的运用。
练习册系列答案
相关题目
设
是空间三条直线,
是空间两个平面,则下列命题中,逆命题不成立的是( )
| A.当 |
| B.当 |
| C.当 |
| D.当 |