题目内容
已知函数f(x)=
x3+
ax2+2bx+c(a,b,c∈R),且函数f(x)在区间(0,1)内取得极大值,在区间(1,2)内取得极小值,则z=(a+3)2+b2的取值范围( )
| 1 |
| 3 |
| 1 |
| 2 |
A、(
| ||||
B、(
| ||||
| C、(1,2) | ||||
| D、(1,4) |
分析:据极大值点左边导数为正右边导数为负,极小值点左边导数为负右边导数为正得a,b的约束条件,据线性规划求出最值.
解答:解:∵f(x)=
x3+
a x2+2bx+c
∴f′(x)=x2+ax+2b
∵函数f(x)在区间(0,1)内取得极大值,在区间(1,2)内取得极小值
∴f′(x)=x2+ax+2b=0在(0,1)和(1,2)内各有一个根
f′(0)>0,f′(1)<0,f′(2)>0
即
0

(a+3)2+b2表示点(a,b)到点(-3,0)的距离的平方,
由图知(-3,0)到直线a+b+2=0的距离
,平方为
为最小值,
由
得(-3,1)
(-3,0)与(-3,1)的距离为1,
(-3,0)与(-1,0)的距离2,
所以z=(a+3)2+b2的取值范围为(
,4)
故选项为B
| 1 |
| 3 |
| 1 |
| 2 |
∴f′(x)=x2+ax+2b
∵函数f(x)在区间(0,1)内取得极大值,在区间(1,2)内取得极小值
∴f′(x)=x2+ax+2b=0在(0,1)和(1,2)内各有一个根
f′(0)>0,f′(1)<0,f′(2)>0
即
|
(a+3)2+b2表示点(a,b)到点(-3,0)的距离的平方,
由图知(-3,0)到直线a+b+2=0的距离
| ||
| 2 |
| 1 |
| 2 |
由
|
(-3,0)与(-3,1)的距离为1,
(-3,0)与(-1,0)的距离2,
所以z=(a+3)2+b2的取值范围为(
| 1 |
| 2 |
故选项为B
点评:本题考查函数极值存在条件及线性规划求最值.
练习册系列答案
相关题目
已知函数f(x)=
,g(x)=1+
,若f(x)>g(x),则实数x的取值范围是( )
| 1 |
| |x| |
| x+|x| |
| 2 |
| A、(-∞,-1)∪(0,1) | ||||
B、(-∞,-1)∪(0,
| ||||
C、(-1,0)∪(
| ||||
D、(-1,0)∪(0,
|