题目内容
已知函数f(x)=sin(
x-
)-2cos2
x+1,函数g(x)与函数f(x)图象关于y轴对称.
(Ⅰ)当x∈[0,2]时,求g(x)的值域及单调递减区间
(Ⅱ)若g(x0-1)=
,x0∈(-
,-
)求sinπx0值.
| π |
| 2 |
| π |
| 6 |
| π |
| 4 |
(Ⅰ)当x∈[0,2]时,求g(x)的值域及单调递减区间
(Ⅱ)若g(x0-1)=
| ||
| 3 |
| 5 |
| 3 |
| 2 |
| 3 |
分析:(Ⅰ)利用两角和与差的正弦及二倍角的余弦可将f(x)化简为f(x)=
sin(
x-
),利用又g(x)与f(x)图象关于y轴对称,可求得g(x)=-
sin(
x+
),从而利用正弦函数的单调性与定义域、值域可求得当x∈[0,2]时,求g(x)的值域及单调递减区间;
(Ⅱ)依题意,可求得cos(
x0+
)=
,利用二倍角的可得cos(πx0+
)=-
,进一步可求得πx0+
∈(-π,0),sin(πx0+
)=-
,于是可求sinπx0值.
| 3 |
| π |
| 2 |
| π |
| 3 |
| 3 |
| π |
| 2 |
| π |
| 3 |
(Ⅱ)依题意,可求得cos(
| π |
| 2 |
| π |
| 3 |
| 1 |
| 3 |
| 2π |
| 3 |
| 7 |
| 9 |
| 2π |
| 3 |
| 2π |
| 3 |
4
| ||
| 9 |
解答:解:(Ⅰ)f(x)=sin(
x-
)-2cos2
+1
=sin
x•
-cos
x•
-2•
+1
=
sin
x-
cos
x
=
(
sin
x-
cos
x)
=
sin(
x-
),
又g(x)与f(x)图象关于y轴对称,
得g(x)=f(-x)=
sin(-
x-
)=-
sin(
x+
),
当x∈[0,2]时,得
x+
∈[
,
],
得sin(
x+
)∈[-
,1],
即g(x)∈[-
,
],
g(x)单调递减区间满足2kπ-
≤
x+
≤2kπ+
,k∈Z,
得4k-
≤x≤4k+
,k∈Z,
取k=0,得-
≤x≤
,又x∈[0,2],g(x)单调递减区间为[0,
].
(Ⅱ)由(Ⅰ)知g(x0-1)=-
sin[
(x0-1)+
]
=
sin[
-(
x0+
)]
=
cos(
x0+
)
=
,
得cos(
x0+
)=
,
由于cos(πx0+
)=2cos2(
x0+
)-1=
-1=-
,
而x0∈(-
,-
),
∴πx0+
∈(-π,0),
∴sin(πx0+
)=-
=-
,
sin(πx0)=sin[(πx0+
)-
]
=sin(πx0+
)cos
-cos(πx0+
)sin
=-
(-
)-(-
)×
=
.
| π |
| 2 |
| π |
| 6 |
| π |
| 4 |
=sin
| π |
| 2 |
| ||
| 2 |
| π |
| 2 |
| 1 |
| 2 |
1+cos
| ||
| 2 |
=
| ||
| 2 |
| π |
| 2 |
| 3 |
| 2 |
| π |
| 2 |
=
| 3 |
| 1 |
| 2 |
| π |
| 2 |
| ||
| 2 |
| π |
| 2 |
=
| 3 |
| π |
| 2 |
| π |
| 3 |
又g(x)与f(x)图象关于y轴对称,
得g(x)=f(-x)=
| 3 |
| π |
| 2 |
| π |
| 3 |
| 3 |
| π |
| 2 |
| π |
| 3 |
当x∈[0,2]时,得
| π |
| 2 |
| π |
| 3 |
| π |
| 3 |
| 4π |
| 3 |
得sin(
| π |
| 2 |
| π |
| 3 |
| ||
| 2 |
即g(x)∈[-
| 3 |
| 3 |
| 2 |
g(x)单调递减区间满足2kπ-
| π |
| 2 |
| π |
| 2 |
| π |
| 3 |
| π |
| 2 |
得4k-
| 5 |
| 3 |
| 1 |
| 3 |
取k=0,得-
| 5 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
(Ⅱ)由(Ⅰ)知g(x0-1)=-
| 3 |
| π |
| 2 |
| π |
| 3 |
=
| 3 |
| π |
| 2 |
| π |
| 2 |
| π |
| 3 |
=
| 3 |
| π |
| 2 |
| π |
| 3 |
=
| ||
| 3 |
得cos(
| π |
| 2 |
| π |
| 3 |
| 1 |
| 3 |
由于cos(πx0+
| 2π |
| 3 |
| π |
| 2 |
| π |
| 3 |
| 2 |
| 9 |
| 7 |
| 9 |
而x0∈(-
| 5 |
| 3 |
| 2 |
| 3 |
∴πx0+
| 2π |
| 3 |
∴sin(πx0+
| 2π |
| 3 |
1-cos2(
|
4
| ||
| 9 |
sin(πx0)=sin[(πx0+
| 2π |
| 3 |
| 2π |
| 3 |
=sin(πx0+
| 2π |
| 3 |
| 2π |
| 3 |
| 2π |
| 3 |
| 2π |
| 3 |
=-
4
| ||
| 9 |
| 1 |
| 2 |
| 7 |
| 9 |
| ||
| 2 |
=
4
| ||||
| 18 |
点评:本题考查两角和与差的正弦及二倍角的余弦,考查正弦函数的单调性与最值,突出考查三角函数性质与运算的综合应用,属于难题.
练习册系列答案
相关题目