题目内容
已知数列{an}的前n项和为Sn,a1=
,且2Sn=2Sn-1+2an-1+1(n≥2,n∈N*).数列{bn}满足b1=
,且3bn-bn-1=n(n≥2,n∈N*).
(Ⅰ)求证:数列{an}为等差数列;
(Ⅱ)求证:数列{bn-an}为等比数列;
(Ⅲ)求数列{bn}的通项公式以及前n项和Tn.
| 1 |
| 4 |
| 3 |
| 4 |
(Ⅰ)求证:数列{an}为等差数列;
(Ⅱ)求证:数列{bn-an}为等比数列;
(Ⅲ)求数列{bn}的通项公式以及前n项和Tn.
(Ⅰ)证明:∵2Sn=2Sn-1+2an-1+1(n≥2,n∈N*),
∴当n≥2时,2an=2an-1+1,
可得an-an-1=
.
∴数列{an}为等差数列.(4分)
(Ⅱ)证明:∵{an}为等差数列,公差d=
,
∴an=a1+(n-1)×
=
n-
.(5分)
又3bn-bn-1=n(n≥2),
∴bn=
bn-1+
n(n≥2),
∴bn-an=
bn-1+
n-
n+
=
bn-1-
n+
=
(bn-1-
n+
)
=
[bn-1-
(n-1)+
]
=
(bn-1-an-1).(8分)
又b1-a1=
≠0,
∴对n∈N*,bn-an≠0,得
=
(n≥2).
∴数列{bn-an}是首项为
公比为
等比数列.(9分)
(Ⅲ)由(Ⅱ)得bn-an=
•(
)n-1,
∴b n=
-
+
•(
)n-1 (n∈N*).(11分)
∵b1-a1+b2-a2++bn-an=
,
∴b1+b2++bn-(a1+a2++an)=
[1-(
)n],
∴Tn-
=
[1-(
)n].
∴Tn=
+
[1-(
)n] (n∈N*).(14分)
∴当n≥2时,2an=2an-1+1,
可得an-an-1=
| 1 |
| 2 |
∴数列{an}为等差数列.(4分)
(Ⅱ)证明:∵{an}为等差数列,公差d=
| 1 |
| 2 |
∴an=a1+(n-1)×
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 4 |
又3bn-bn-1=n(n≥2),
∴bn=
| 1 |
| 3 |
| 1 |
| 3 |
∴bn-an=
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 3 |
| 1 |
| 6 |
| 1 |
| 4 |
=
| 1 |
| 3 |
| 1 |
| 2 |
| 3 |
| 4 |
=
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 4 |
=
| 1 |
| 3 |
又b1-a1=
| 1 |
| 2 |
∴对n∈N*,bn-an≠0,得
| bn-an |
| bn-1-an-1 |
| 1 |
| 3 |
∴数列{bn-an}是首项为
| 1 |
| 2 |
| 1 |
| 3 |
(Ⅲ)由(Ⅱ)得bn-an=
| 1 |
| 2 |
| 1 |
| 3 |
∴b n=
| n |
| 2 |
| 1 |
| 4 |
| 1 |
| 2 |
| 1 |
| 3 |
∵b1-a1+b2-a2++bn-an=
| ||||
1-
|
∴b1+b2++bn-(a1+a2++an)=
| 3 |
| 4 |
| 1 |
| 3 |
∴Tn-
| n2 |
| 4 |
| 3 |
| 4 |
| 1 |
| 3 |
∴Tn=
| n2 |
| 4 |
| 3 |
| 4 |
| 1 |
| 3 |
练习册系列答案
相关题目
已知数列{an}的前n项和Sn=an2+bn(a、b∈R),且S25=100,则a12+a14等于( )
| A、16 | B、8 | C、4 | D、不确定 |