题目内容
如图,正四棱柱ABCD-A1B1C1D1中,AA1=2AB=4,点E在CC1上且C1E=3EC.
(Ⅰ)证明:A1C⊥平面BED;
(Ⅱ)求二面角A1-DE-B的大小.
(Ⅰ)证明:A1C⊥平面BED;
(Ⅱ)求二面角A1-DE-B的大小.
解法一:
依题设知AB=2,CE=1.
(Ⅰ)连接AC交BD于点F,则BD⊥AC.
由三垂线定理知,BD⊥A1C.(3分)
在平面A1CA内,连接EF交A1C于点G,
由于
| AA1 |
| FC |
| AC |
| CE |
| 2 |
故Rt△A1AC∽Rt△FCE,∠AA1C=∠CFE,∠CFE与∠FCA1互余.
于是A1C⊥EF.A1C与平面BED内两条相交直线BD,EF都垂直,
所以A1C⊥平面BED.(6分)
(Ⅱ)作GH⊥DE,垂足为H,连接A1H.由三垂线定理知A1H⊥DE,
故∠A1HG是二面角A1-DE-B的平面角.(8分)
EF=
| CF2+CE2 |
| 3 |
| CE×CF |
| EF |
| ||
|
| CE2-CG2 |
| ||
| 3 |
| EG |
| EF |
| 1 |
| 3 |
| 1 |
| 3 |
| EF×FD |
| DE |
| ||
|
又A1C=
A
|
| 6 |
5
| ||
| 3 |
| A1G |
| HG |
| 5 |
所以二面角A1-DE-B的大小为arctan5
| 5 |
解法二:
以D为坐标原点,射线DA为x轴的正半轴,
建立如图所示直角坐标系D-xyz.
依题设,B(2,2,0),C(0,2,0),E(0,2,1),A1(2,0,4).
| DE |
| DB |
| A1C |
| DA1 |
(Ⅰ)因为
| A1C |
| DB |
| A1C |
| DE |
故A1C⊥BD,A1C⊥DE.
又DB∩DE=D,
所以A1C⊥平面DBE.(6分)
(Ⅱ)设向量
| n |
| DE |
| DA1 |
故2y+z=0,2x+4z=0.
令y=1,则z=-2,x=4,
| n |
| n |
| A1C |
| n |
| A1C |
| ||||
|
|
| ||
| 42 |
所以二面角A1-DE-B的大小为arccos
| ||
| 42 |
练习册系列答案
相关题目