题目内容
已知函数f(x)=
-log2
.
(1)求f(x)的定义域;
(2)讨论f(x)的奇偶性;
(3)证明f(x)在(0,1)内单调递减.
| 1 |
| x |
| 1+x |
| 1-x |
(1)求f(x)的定义域;
(2)讨论f(x)的奇偶性;
(3)证明f(x)在(0,1)内单调递减.
(1)
?-1<x<0或0<x<1,
故f(x)的定义域为(-1,0)∪(0,1);
(2)∵f(-x)=-
-log2
=-(
-log2
)=-f(x),
∴f(x)是奇函数;
(3)设0<x1<x2<1,则f(x1)-f(x2)=(
-
)+(log2
-log2
=
+log2
∵0<x1<x2<1,∴x2-x1>0,x1x2>0,
(1-x1)(1+x2)=1-x1x2+(x2-x1)>1-x1x2-(x2-x1)=(1+x1)(1-x2)>0
∴
>1, log2
>0,
>0
∴f(x1)-f(x2)>0,即f(x1)>f(x2)∴f(x)在(0,1)内递减.
另f′(x)=-(
+
log2e)∴当x∈(0,1)时,f′(x)<0
故f(x)在(0,1)内是减函数.
|
故f(x)的定义域为(-1,0)∪(0,1);
(2)∵f(-x)=-
| 1 |
| x |
| 1-x |
| 1+x |
| 1 |
| x |
| 1+x |
| 1-x |
∴f(x)是奇函数;
(3)设0<x1<x2<1,则f(x1)-f(x2)=(
| 1 |
| x1 |
| 1 |
| x2 |
| 1+x2 |
| 1+x2 |
| 1+x1 |
| 1-x1 |
| x2-x1 |
| x1x2 |
| (1-x1)(1+x2) |
| (1+x1)(1-x2) |
∵0<x1<x2<1,∴x2-x1>0,x1x2>0,
(1-x1)(1+x2)=1-x1x2+(x2-x1)>1-x1x2-(x2-x1)=(1+x1)(1-x2)>0
∴
| (1-x1)(1+x2) |
| (1+x1)(1-x2) |
| (1-x1)(1+x2) |
| (1+x1)(1-x2) |
| x2-x1 |
| x1x2 |
∴f(x1)-f(x2)>0,即f(x1)>f(x2)∴f(x)在(0,1)内递减.
另f′(x)=-(
| 1 |
| x2 |
| 2 |
| 1-x2 |
故f(x)在(0,1)内是减函数.
练习册系列答案
相关题目