题目内容

在△ABC中,2sinA+cosB=2,sinB+2cosA=
3
,则∠C的大小应为(  )
A.
π
3
B.
π
6
C.
π
6
5
6
π
D.
π
3
3
对2sinA+cosB=2,sinB+2cosA=
3
两边分别平方,
得:(2sinA+cosB)2=4,(sinB+2cosA)2=3,
两式相加化简得:4(sinAcosB+sinBcosA)=2,
整理得:sin(A+B)=
1
2

∴sin(180°-C)=sin(A+B)=sinC=
1
2

∴∠C=
π
6
6

若C=
6
,可得A+B=
π
6
,cosB<1,2sinA<1,2sinA+cosB=2,不成立,
所以C=
π
6

故选B
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网