题目内容
已知数列{an}满足a1=1,an-an-1=
(n≥2),求数列{an}的通项公式.
| 1 | n(n-1) |
分析:由递推公式可得an-an-1=
=
-
(n≥2),由此可得a2-a1=1-
,a3-a2=
-
,a4-a3=
-
,…,an-an-1=
-
,把各式加起来即可求得an,注意验证n=1时情况》
| 1 |
| n(n-1) |
| 1 |
| n-1 |
| 1 |
| n |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| n-1 |
| 1 |
| n |
解答:解:因为an-an-1=
=
-
(n≥2),
所以a2-a1=1-
,a3-a2=
-
,a4-a3=
-
,…,an-an-1=
-
,
把以上各式加起来,得an-a1=(1-
)+(
-
)+(
-
)+…+(
-
)=1-
(n≥2),
所以an=2-
(n≥2),
当n=1时,a1=1适合上式,
所以an=2-
(n∈N*).
| 1 |
| n(n-1) |
| 1 |
| n-1 |
| 1 |
| n |
所以a2-a1=1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| n-1 |
| 1 |
| n |
把以上各式加起来,得an-a1=(1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| n-1 |
| 1 |
| n |
| 1 |
| n |
所以an=2-
| 1 |
| n |
当n=1时,a1=1适合上式,
所以an=2-
| 1 |
| n |
点评:本题考查由数列递推公式求数列通项公式,已知形如an+1-an=f(n)求an,常用累加法解决.
练习册系列答案
相关题目