搜索
题目内容
已知菱形ABCD的边长为2,∠DAB=60°,E、F分别为CD,BC的中点,则
=________.
试题答案
相关练习册答案
分析:由题意可得,
与
的夹角等于60°,且
=(
)•(
),利用两个向量的数量积的定义,运算求得结果.
解答:由题意可得,
与
的夹角等于60°,
=(
)•(
)=
-
+
-
=
=
=
,
故答案为
.
点评:本题主要考查两个向量的加减法的法则,以及其几何意义,两个向量的数量积的定义,属于中档题.
练习册系列答案
小学语文词语手册吉林教育出版社系列答案
初中总复习中考精编系列答案
创新金卷毕业升学系列答案
创新课时训练系列答案
创新学案课时学练测系列答案
创新学习三级训练系列答案
创新与探究系列答案
达标测试卷系列答案
达标训练系列答案
打好基础课堂10分钟系列答案
相关题目
如图,已知菱形ABCD的边长为6,∠BAD=60°,AC∩BD=O.将菱形ABCD沿对角线AC折起,使
BD=3
2
,得到三棱锥B-ACD.
(Ⅰ)若点M是棱BC的中点,求证:OM∥平面ABD;
(Ⅱ)求二面角A-BD-O的余弦值.
已知菱形ABCD的边长为2,对角线AC与BD交于点O,且∠ABC=120°,M为BC的中点.将此菱形沿对角线BD折成二面角A-BD-C.
( I)求证:面AOC⊥面BCD;
( II)若二面角A-BD-C为60°时,求直线AM与面AOC所成角的余弦值.
已知菱形ABCD的边长为10,∠ABC=60°,将这个菱形沿对角线BD折成120°的二面角,则A、C两点的距离是( )
A.5
B.5
2
C.
15
2
D.5
3
如图所示,已知菱形ABCD的边长为2,将其沿对角线BD折成直二面角A-BD-C.
(1)证明:AC⊥BD;
(2)若二面角A-BC-D的平面角的正切值为2,求三棱锥A-BCD的体积.
如图,已知菱形ABCD的边长为2,∠BAD=60°,S为平面ABCD外一点,△SAD为正三角形,
SB=
6
,M、N分别为SB、SC的中点.
(Ⅰ)求证:平面SAD⊥平面ABCD;
(Ⅱ)求二面角A-SB-C的余弦值;
(Ⅲ)求四棱锥M-ABN的体积.
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总
练习册解析答案