题目内容
△ABC的内角A、B、C所对的边分别为a,b,c,且asinA+bsinB=csinC+
asinB
(I)求角C;
(II)求
sinA-cos(B+
)的最大值.
| 2 |
(I)求角C;
(II)求
| 3 |
| π |
| 4 |
(I)∵asinA+bsinB=csinC+
asinB
∴a2+b2=c2+
ab
即a2+b2-c2=
ab
由余弦定理cosC=
=
∵C∈(0,π)
∴C=
(II)由题意可得
sinA-cos(B+
)=
sinA-cos(
-A+
)
=
sinA-cosA=2(
sinA+
cosA)
=2sin(A+
)
∵A∈(0,π)
∴A+
∈(
,
)
∴-1≤2sin(A+
)≤2
∴
sinA-cos(B+
)的最大值为2
| 2 |
∴a2+b2=c2+
| 2 |
即a2+b2-c2=
| 2 |
由余弦定理cosC=
| a2+b2-c2 |
| 2ab |
| ||
| 2 |
∵C∈(0,π)
∴C=
| π |
| 4 |
(II)由题意可得
| 3 |
| π |
| 4 |
| 3 |
| 3π |
| 4 |
| π |
| 4 |
=
| 3 |
| ||
| 2 |
| 1 |
| 2 |
=2sin(A+
| π |
| 6 |
∵A∈(0,π)
∴A+
| π |
| 6 |
| π |
| 6 |
| 11π |
| 12 |
∴-1≤2sin(A+
| π |
| 6 |
∴
| 3 |
| π |
| 4 |
练习册系列答案
相关题目