题目内容
A.1 B.ω C. D.
C ω2=(+i)2=i=i=.
(本小题满分12分)
有编号为,,…的10个零件,测量其直径(单位:cm),得到下面数据:
其中直径在区间[1.48,1.52]内的零件为一等品。
(Ⅰ)从上述10个零件中,随机抽取一个,求这个零件为一等品的概率;
(Ⅱ)从一等品零件中,随机抽取2个.
(ⅰ)用零件的编号列出所有可能的抽取结果;
(ⅱ)求这2个零件直径相等的概率。本小题主要考查用列举法计算随机事件所含的基本事件数及事件发生的概率等基础知识,考查数据处理能力及运用概率知识解决简单的实际问题的能力。满分12分
【解析】(Ⅰ)解:由所给数据可知,一等品零件共有6个.设“从10个零件中,随机抽取一个为一等品”为事件A,则P(A)==.
(Ⅱ)(i)解:一等品零件的编号为.从这6个一等品零件中随机抽取2个,所有可能的结果有:,,,
,,,共有15种.
(ii)解:“从一等品零件中,随机抽取的2个零件直径相等”(记为事件B)的所有可能结果有:,,共有6种.
所以P(B)=.
如图,在五面体ABCDEF中,四边形ADEF是正方形,FA⊥平面ABCD,BC∥AD,CD=1,AD=,∠BAD=∠CDA=45°.
(Ⅰ)求异面直线CE与AF所成角的余弦值;
(Ⅱ)证明CD⊥平面ABF;
(本小题满分13分)
品酒师需定期接受酒味鉴别功能测试,一种通常采用的测试方法如下:拿出瓶外观相同但品质不同的酒让其品尝,要求其按品质优劣为它们排序;经过一段时间,等其记忆淡忘之后,再让其品尝这瓶酒,并重新按品质优劣为它们排序,这称为一轮测试。根据一轮测试中的两次排序的偏离程度的高低为其评为。
现设,分别以表示第一次排序时被排为1,2,3,4的四种酒在第二次排序时的序号,并令
,
则是对两次排序的偏离程度的一种描述。
(Ⅰ)写出的可能值集合;
(Ⅱ)假设等可能地为1,2,3,4的各种排列,求的分布列;
(Ⅲ)某品酒师在相继进行的三轮测试中,都有,
(i)试按(Ⅱ)中的结果,计算出现这种现象的概率(假定各轮测试相互独立);
(ii)你认为该品酒师的酒味鉴别功能如何?说明理由。
(共14分,6分+8分)
某企业去年的纯利润为500万元,因设备老化等原因,企业的生产能力将逐年下降。若不进行技术改造,预测今年起每年比上一年的纯利润减少20万元。今年初该企业一次性投入资金600万元进行技术改造,预测在未扣除技术改造资金的情况下,第n年(今年为第一年)的利润为500(1+)万元(n为正整数)。设从今年起的前n年,若该企业不进行技术改造的累计纯利润为An万元,进行技术改造后的累计纯利润为Bn万元(需扣除技术改造资金)
(1)、求An、Bn的表达式;(2)、依上述预测,从今年起该企业至少经过多少年,进行技术改造后的累计纯利润超过不进行技术改造的累计纯利润?
23(共10分,每个空格2分)
课本在介绍“i2=-1的几何意义”中讲到:将复平面上的向量乘以i就是沿逆时针方向旋转900,那么乘以-i就是沿顺时针方向旋转900。做以下填空:
已知复平面上的向量分别对应复数3-i、-2+i,则向量对应的复数为 ;那么,以线段MN为一边作两个正方形MNQP和MNQ,P,,则点P、Q对应的复数分别为 、 ;点P,、Q,对应的复数分别为 、 。