题目内容
若
,
,
是两两互相垂直的单位向量且
=
+2
-
,
=
-
+2
则5
与3
的数量积等于
| i |
| j |
| k |
| a |
| 3i |
| j |
| k |
| b |
| i |
| j |
| k |
| a |
| b |
-15
-15
.分析:先根据
=
+2
-
,
=
-
+2
求5
与3
,再计算数量积,因为
,
,
是两两互相垂直的单位向量,
所以
•
=0,
•
=0,
•
=0,且|
|2=1,|
|2=1,|
|2=1,即可得出结果.
| a |
| 3i |
| j |
| k |
| b |
| i |
| j |
| k |
| a |
| b |
| i |
| j |
| k |
所以
| i |
| j |
| i |
| k |
| j |
| k |
| i |
| j |
| k |
解答:解:∵
=
+2
-
,∴5
=15
+10
-5
,
∵
=
-
+2
,∴3
=3
-3
+6
∴5
•3
=45|
|2-45
•
+90
•
+30
•
-30|
|2+60
•
-15
•
-15
•
-30|
|2
∵
,
,
是两两互相垂直的单位向量,∴
•
=0,
•
=0,
•
=0
∴5
•3
=45|
|2-30 |
|2-30|
|2=45-30-30=-15
故答案为-15.
| a |
| 3i |
| j |
| k |
| a |
| i |
| j |
| k |
∵
| b |
| i |
| j |
| k |
| b |
| i |
| j |
| k |
∴5
| a |
| b |
| i |
| i |
| j |
| i |
| k |
| i |
| j |
| j |
| j |
| k |
| i |
| k |
| j |
| k |
| k |
∵
| i |
| j |
| k |
| i |
| j |
| i |
| k |
| j |
| k |
∴5
| a |
| b |
| i |
| j |
| k |
故答案为-15.
点评:本题考查了向量数量积的运算,其中用到了单位向量的模为1,互相垂直的向量数量积为0.
练习册系列答案
相关题目